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Résumé. Cette thèse explore certains aspects de la solvabilité exacte en théorie des matrices
aléatoires. Elle est structurée en deux parties principales.

La première partie traite d’un problème en grande dimension, sur comportement asymptotique
des polynômes caractéristiques de matrices aléatoires. Nous nous concentrons sur deux modèles
intégrables. Le premier est l’Ensemble de Ginibre Elliptique, une interpolation gaussienne en-
tre l’Ensemble de Ginibre et son homologue hermitien, l’Ensemble Unitaire Gaussien. Le second
modèle concerne les matrices de permutation, où la permutation sous-jacente suit la distribution
d’Ewens généralisée pour laquelle la mesure d’une permutation dépend uniquement de sa structure
en cycles. Pour ces deux modèles, nous établissons la convergence en loi du polynôme caractéris-
tique vers une fonction analytique aléatoire lorsque la dimension des matrices tend vers l’infini.
Cette convergence a lieu en dehors du support des valeurs propres et est complémentaire de la
convergence des distributions spectrales.

La seconde partie concerne un problème en dimension fixée. Nous considérons des produits de
matrices unitaires uniformément distribuées sur des orbites de conjugaison. Nous déterminons
la densité de probabilité des valeurs propres de ce produit. Cette densité est liée au volume de
l’espace des modules des connexions plates sur une sphère à trois trous. Notre formule fournit une
expression positive pour la densité et pour ce volume sous la forme d’une somme de volumes de
polytopes explicites. Ces polytopes émergent d’objets combinatoires appelés puzzles, permettant
de calculer les coefficients d’intersection pour la cohomologie des variétés de drapeaux à deux sous-
espaces. Nous explorons également certaines propriétés de ces puzzles.

Mots-clés: Spectre de matrices aléatoires, fonctions analytiques aléatoires, cohomologie quantique,
pavages du réseau triangulaire.

Abstract. This thesis explores certain aspects of exact solvability in random matrix theory. It is
structured into two main parts.

The first part examines a high dimensional problem on the asymptotic behavior of characteris-
tic polynomials of random matrices. We focus on two integrable models. The first is the Elliptic
Ginibre Ensemble, a Gaussian interpolation between the Ginibre Ensemble and their Hermitian
counterpart, the Gaussian Unitary Ensemble. The second model involves permutation matrices,
where the underlying permutation follows the generalized Ewens distribution, for which the mea-
sure of a permutation only depends on its cycle structure. For both models, we establish the
convergence in law of the characteristic polynomial, as the matrix dimension tends to infinity,
towards a random analytic function. This convergence occurs outside the eigenvalue support and
is complementary to the convergence of spectral distributions.

The second part is a fixed dimensional problem. We consider a product of unitary matrices
that are uniformly distributed on fixed conjugacy orbits. We derive the probability density for the
eigenvalues of this product. This probabilty density is related to the volume of moduli space of
flat connections on the three-holed sphere. Our formula provides an positive expression for both
the density and this volume as a sum of volumes of explicit polytopes. These polytopes arise from
combinatorial objects called puzzles, which compute intersection coefficients for the cohomology of
two-step flag varieties. We further investigate some properties of these puzzles.

Keywords: Spectrum of random matrices, random analytic functions, quantum cohomology, tilings
of the triangular lattice.
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Chapter 1

Random Matrix Theory

This thesis lies in the theory of random matrices, a field that emerged from large data
analysis and statistical models of heavy atoms. The origins of random matrix theory go
back to the work of Wishart [Wis28] in statistical science and later to Wigner [Wig55],
who introduced random matrices in the context of quantum mechanics for heavy atoms.
Wigner was the first to study large-dimensional matrices, specifically in the asymptotic
regime where the matrix dimension tends to infinity. Mehta had a significant impact on
the field in the 1960s leading to a theory on the spectrum with the first edition of the
book [Meh04]. The field continued to expand with results on the spectrum of covariance
matrices by Marchenko and Pastur [MP68] in 1967. Over time, techniques from complex
analysis, combinatorics and potential theory enriched random matrix theory. A major
breakthrough came with the introduction of free probability by Voiculescu [Voi86] in the
1980s, leading to a better understanding of the asymptotic behavior of large random ma-
trices. Since the 1990s, the field has witnessed advancements in the study of extreme
eigenvalues, outliers and central limit theorems for linear statistics. Universality questions
on the behavior of large random matrices came forward, some of which are still open.

The goal of this chapter is to give an overview of random matrix theory. This chap-
ter is divided into four sections. Section 1.1 presents general definitions together with
some observables that are relevant for the study of random matrices. It also introduces
key examples of random matrices which will be ubiquitous in the rest of this thesis. Sec-
tion 1.2 is devoted to Determinantal Point Processes which is a class of point processes
having additional structure for its correlation functions. Determinantal point processes
arise in many models related to random matrix theory to describe the joint behavior of
eigenvalues. Section 1.3 gives the two main convergence results on eigenvalues for Her-
mitian and i.i.d. matrices that are respectively the semicircular law and the circular law.
Section 1.4 goes further and presents fine fluctuation results on extreme eigenvalues and
on the spectral radius. Main references for this chapter are the books [Meh04; AGZ10;
BS06; MS17] and the lecture notes [Spe20].

1.1 Random Matrices

This section presents a general background on random matrices with examples of models
at play in this thesis. We mainly follow [BS06].

11



12 CHAPTER 1. RANDOM MATRIX THEORY

1.1.1 Empirical Spectral Distribution of Random Matrices

Let (Ω,F ,P) be a probability space. For n ⩾ 1, we denote by Mn(C) the space of n× n
matrices having complex entries.

Definition 1.1.1 (Random matrix). A random matrix of size n ⩾ 1 is a random variable
A = (aij)1⩽i,j⩽n with values in Mn(C).

A natural measure associated to a (non-necessarily random) matrix is the uniform measure
on its eigenvalues. We call this measure the empirical eigenvalue distribution, or the
spectral distribution, of the matrix.

Definition 1.1.2 (Empirical eigenvalue distribution). Let A ∈ Mn(C) be a matrix of
size n ⩾ 1. Denote by λ1(A), . . . , λn(A) its eigenvalues with possible multiplicities. The
empirical eigenvalue distribution of A is the probability measure µn(A) on C given by

µn(A) := 1
n

n∑
k=1

δλk(A) . (1.1.1)

The empirical eigenvalue distribution is supported on at most n different atoms located
on eigenvalues of A, each having weight proportionnal to the multiplicity of the associated
eigenvalue.

Let us define P(C) to be the space of probability measures on C. In the case where
the matrix An is a random matrix of size n, the measure µn(An) is a random variable in
P(C). Notice that the space P(C) does not depend on n, the size of the matrix, so that
one can consider empirical eigenvalue distributions of matrices having different sizes as
random variables in the same space.

1.1.2 Archetypes of random matrices

The definition of a random matrix is very broad as the entries can have arbitrary cor-
relations and distributions. We will see that the behavior of random matrices vary de-
pending on the structural dependence of its entries. Here, we give an overview of classical
archetypes of random matrices as motivating examples.

Girko matrices

The simplest example of a random matrix is the one where the entries are independent and
identically distributed random variables. Such matrices are called Girko matrices after the
work of Girko [Gir18; Gir84].

Definition 1.1.3 (Girko matrix). Let A = (aij)i,j⩾1 be an array of i.i.d. random variables.
We call the matrix An = (aij)1⩽i,j⩽n a Girko matrix of size n.

Definition 1.1.3 fixes the dependence relations in the random matrix but is still very general
as the common law of the entries is not prescribed. The first appearance of matrices with
i.i.d. entries traces back to the work of Ginibre [Gin65] who considered the particular case
where entries are distributed according to the complex normal distribution. Recall that
the normal or Gaussian distribution with parameters m,σ is defined as the probability
distribution having density

f(x) = 1√
2πσ

exp
(

−(x−m)2

2σ2

)
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with respect to the Lebesgue measure dx on R. We denote it by N (m,σ2). We extend
this definition to C by taking independent real and imaginary parts.

Definition 1.1.4 (Complex normal distribution). Let Y and Z be two independent real
random variables with distribution N (0, 1

2). The complex normal distribution is the law of
the random variable X = Y + iZ. We denote it by NC(0, 1). We say that X is a standard
complex Gaussian.

Another way to describe the complex normal distribution is by specifying the density
1
π e−|z|2 with respect to the Lebesgue measure dz on C. One can therefore consider Girko
matrices where entries follow the complex normal distribution. This specific case is known
as the Ginibre Ensemble.

Definition 1.1.5 (Ginibre Ensemble). The Ginibre Ensemble of size n ⩾ 1 is the law
of a Girko matrix An = (aij)1⩽i,j⩽n where entries aij are standard complex Gaussians.
Alternatively, it is the probability distribution on Mn(C) given by

dPn[A] := 1
πn2 exp (− Tr [AA∗]) dA , (1.1.2)

where dA is the Lebesgue measure on Mn(C) and where A∗ is the adjoint of A.

The Ginibre Ensemble has a rich structure. It is the first integrable model presented
here, in the sense that working with the complex normal distribution allows for many
explicit computations. The first example of such explicit computations is the probability
distribution of the eigenvalues of a Ginibre matrix, obtained by Ginibre [Gin65].

Proposition 1.1.6 (Ginibre eigenvalue density, [Gin65]). Let An be a Ginibre matrix of
size n ⩾ 1. Then, its eigenvalues (λ1, . . . , λn) have joint distribution on Cn

1
Zn

∏
i<j

|λi − λj |2e−
∑n

i=1 |λi|2dλ , (1.1.3)

where dλ is the Lebesgue measure on Cn and where Zn is a normalization constant.

Wigner matrices

Random matrix theory played a fundamental role in the development of quantum me-
chanics between 1940 and 1950. In the latter context, the motivation was to model heavy
nuclei by a discretized Hamiltonian given by a n × n matrix. The discrete Hamiltonian
satisfies some symmetry assumptions which give a Hermitian condition on the discretized
matrix. It is therefore natural to consider random matrices satisfying a Hermitian con-
dition. Such matrices are called Wigner matrices after the work of Wigner [Wig55]. For
n ⩾ 1, we denote by Hn the space of Hermitian matrices of size n.

Definition 1.1.7 (Wigner matrix). Let A = (aij)1⩽i⩽j be an array of independent random
variables and let n ⩾ 1. Assume that (aij)i<j are identically distributed. We call the
matrix An = (aij)1⩽i,j⩽n, where for i ⩾ j, aij = aji, a Wigner matrix of size n.

As in Definition 1.1.3, the definition of a Wigner matrix does not specify any distribution
on the upper diagonal entries of the matrix. The most celebrated example is the case
where the entries strictly above the diagonal are standard complex Gaussian and the
diagonal entries are standard (necessarily real) Gaussian. This particular case is called
the Gaussian Unitary Ensemble (GUE).
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Definition 1.1.8 (Gaussian Unitary Ensemble). The Gaussian Unitary Ensemble of size
n ⩾ 1 is the law of the Wigner matrix where entries aij for j > i are distributed according
to NC(0, 1) and where aii are independent, real standard Gaussians. Alternatively, it is
the probability distribution on Hn given by

dP[A] := 1
Zn

exp
(

−1
2 Tr

[
A2
])

dA , (1.1.4)

where dA is the Lebesgue measure on Hn.

The name of the ensemble comes from the fact that the law of a GUE matrix is invariant by
unitary conjugation. The Gaussian Unitary Ensemble can be seen as the Hermitian analog
of the Ginibre Ensemble. Indeed, if A is a Ginibre matrix, then X = A+A∗

√
2 is a GUE ma-

trix. Conversely, given two independent GUE matrices X and Y , then A = 1√
2X + i 1√

2Y

is a Ginibre matrix.

As in the case of the Ginibre Ensemble, the joint law of the eigenvalues of a GUE matrix
is known. Note that the Hermitian condition implies that the eigenvalues lie on the real
line.

Proposition 1.1.9 (GUE eigenvalue distribution [AGZ10]). Let An be a GUE matrix of
size n ⩾ 1. Then, its eigenvalues (λ1, . . . , λn) have joint distribution

1
Zn

∏
i<j

|λi − λj |2e− 1
2
∑n

i=1 λ
2
i dλ , (1.1.5)

where dλ is the Lebesgue measure on Rn and where Zn is a normalization constant.

Coulomb gases

The two examples of the Ginibre Ensemble and the Gaussian Unitary Ensemble are quite
similar as the density of the space of matrices in the two cases has the general form

1
Zn

exp(−F (A))dA (1.1.6)

for a function F given by F (A) = Tr[AA∗] for Ginibre and F (A) = 1
2 Tr[A2] for the GUE.

The induced densities for eigenvalues share the same type of expression, where the func-
tion x 7→ |x|2

2 plays a central role. This motivates for a general definition of probability
densities having same structure with different functions as the one above. This is known
as Coulomb gas and we refer to [Cha21] for an overview on the subject. More on relation
between random matrices and Coulomb gas can be found in [AGZ10; For10]

Fix d ⩾ 1 and let us call a measurable function V : Rd → (−∞,∞] the potential. Define
the function g : Rd → (−∞,∞] with g(0) = ∞ and

g(x) :=

 log( 1
|x|) for d = 2
1

(d−2)|x|d−2 otherwise.
(1.1.7)

The function g is called the Coulomb kernel. It arises from potential theory. For β > 0,
n ⩾ 1 and q > 0 called the charge, the total energy Hn : (Rd)n → (−∞,∞] is defined as

Hn(x1, . . . , xn) := βq
n∑
i=1

V (xi) + βq2∑
i<j

g(xi − xj) .
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In electrostatics, it represents the energy of a system of n particles with charge q interacting
via Coulomb interactions under an external potential V . We are now ready to define the
Coulomb gas which the corresponding probability measure.

Definition 1.1.10 (Coulomb gas). Let β, q be positive real numbers and n ⩾ 1. For
V : Rd → (−∞,∞] measurable such that

Zn =
∫

(Rd)n
e−βHn(x)dx ∈ (0,∞) ,

the probability measure defined by

dPn := 1
Zn

e−βHn(x)dx (1.1.8)

is called the Coulomb gas with charge q at inverse temperature β.

The eigenvalue distribution of the Ginibre Ensemble (1.1.3) can be viewed as a two dimen-
sional Coulomb gas with potential V (x) = |x|2

2 , unit charge at inverse temperature β = 2.
The Gaussian Unitary Ensemble corresponds to a two dimensional Coulomb gaz where
V (x) = |x|2

4 for x ∈ R× {0} and +∞ otherwise, with unit charge and inverse temperature
β = 2.

Notice that the previous densities (1.1.3) and (1.1.5) are related to the Vandermonde
determinant

∏
i<j(λi − λj) which is due to the Jacobian of the diagonalization map that

appears when computing the density of eigenvalues from the density on the space of ma-
trices, see Section 2.5 of [AGZ10]. Important examples of Coulomb gases as realizations
of eigenvalues of random matrices are given by Hermite β-Ensembles that generalises the
GUE density (1.1.5).

Definition 1.1.11 (Hermite β-Ensemble). Fix β > 0 and n ⩾ 1. The Hermite β-Ensemble
is the probability distribution on (R)n given by

dPβ,n := 1
Zβ,n

∏
i<j

|xi − xj |βe−β
4
∑n

i=1 x
2
i dx . (1.1.9)

The Hermite β-Ensemble can be seen as a two-dimensional Coulomb gas with potential
V (x) = x2

2 for x ∈ R×{0} and +∞ otherwise, with unit charge, at inverse temperature β.
The case β = 2 corresponds to the GUE eigenvalue density. What is remarkable is that
given β > 0, one can find a random matrix model such that its eigenvalue are distributed
according to (1.1.9). This result is due to Dumitriu and Edelman [DE02]. The matrix
model consists of tridiagonal matrices. For a real parameter r > 0, let us denote by χr
the probability distribution on R having density fr(x) = 1√

2(r−2)Γ(r/2)
xr−1e−x2/2

1x>0.

Theorem 1.1.12 (Matrix representation for Hermite β-Ensemble, [DE02]). Let n ⩾ 1,
β > 0 and let (aii)1⩽i⩽n be i.i.d. standard Gaussian variables. Let (ai,i+1)1⩽i⩽n−1 be
independent variables such that ai,i+1 ∼ χβ(n−i). Then, the tridiagonal, symmetric matrix

An,β =


√

2a11 a12
a12

√
2a22 a21
. . . . . . an−1,n

an−1,n
√

2ann


has its ordered eigenvalues λ1 ⩽ · · · ⩽ λn distributed according to the measure (1.1.9).
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Values β ∈ {1, 2, 4} are of particular interest as they can be realised as eigenvalues of
Gaussian random matrices. We have already seen that the case β = 2 corresponds to the
Gaussian Unitary Ensemble. For β = 1, one can obtain the distribution (1.1.9) as the
eigenvalue density of a real symmetric matrix where entries strictly above the diagonal are
real Gaussians with variance 2 and where the diagonal entries are strandard real Gaussians.
The same holds for β = 4 with quaternionic coefficients.

Unitary matrices

For n ⩾ 1, let us consider the unitary group

U(n) = {U ∈ Mn(C) | UU∗ = U∗U = idCn} .

This is a compact topological subgroup of Mn(C), meaning that in addition to the group
structure, U(n) is a topological space which means that that matrix multiplication · :
U(n) × U(n) → U(n), (x, y) 7→ x · y and inversion −1 : U(n) → U(n), x 7→ x−1 are
continuous maps. The study of random unitary matrices was initiated by Dyson [Dys62]
who considered integrable cases known as Circular Ensembles, see also the work of Girko
[Gir85].
On topological groups, we have the notion of Haar measure which would be the analog of
the uniform measure. We follow the line of chapter 5 in [Far08].
Definition 1.1.13 (Left invariant measure). Let G be a locally compact group. A Radon
measure µ ⩾ 0 on G is said to be left invariant if, for every h ∈ G and continuous function
f on G with compact support,∫

G
f(hg)µ(dg) =

∫
G
f(g)µ(dg).

We give the main theorem of [Far08] Chapter 5 which states that there exists a unique
left invariant measure on G up to a positive factor. This measure is called a left Haar
measure on G.
Theorem 1.1.14 (Existence of Haar measure, [Far08]). Any locally compact group admits
a left invariant measure. Moreover, such a measure is unique up to a multiplicative factor.
We will refer to the Haar measure on G as the left invariant measure µ on G with total
mass of one, that is, µ(G) = 1. We return to the unitary group G = U(n). One has an
explicit construction of the Haar measure as follows. Let An be a Ginibre matrixx of size
n. Apply the Gram-Schmidt orthonormalization procedure. Then, the law of the result-
ing unitary matrix with orthonormal columns is the Haar measure. The invariance under
multiplication by permutation matrices, which are particular cases of unitary matrices,
implies that the entries of a Haar matrix have the same distribution.

The eigenvalues of a unitary matrix are located on the unit circle S1 = {z ∈ C : |z| = 1}.
For a random matrix U following the Haar distribution, it is natural to ask for the joint
distribution of its eigenvalues. We parametrize the eigenvalues by their angles, so that
λi = eiθi for 1 ⩽ i ⩽ n and θi ∈ [0, 2π). The joint density can be computed explicitely, see
[HP00] for a proof.
Theorem 1.1.15 (Joint eigenvalue density of Haar unitary matrices, [HP00]). For n ⩾
1 and Un distributed according to the Haar measure on U(n), the joint distribution of
(θ1, . . . , θn) has density

f(θ1, . . . , θn) = 1
Zn

∏
j<ℓ

|eiθj − eiθℓ |2. (1.1.10)
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The distribution (1.1.10) can also be seen as a two dimensional Coulomb gas, with unit
charge, for β = 2 and with potential V (x) = 0 if x ∈ S1 and V (x) = +∞ otherwise. As
for the Hermite β-Ensemble, there exists an extension of (1.1.10) to any β > 0. Such
distributions are called Circular β-Ensembles, see [DG04].

Definition 1.1.16 (Circular β-Ensemble). Fix β > 0 and n ⩾ 1. The Circular β-Ensemble
is the probability distribution on [0, 2π)n given by

dPβ,n := 1
Zβ,n

∏
j<ℓ

|eiθj − eiθℓ |βdθ . (1.1.11)

For β = 2, we obtain the distribution of the eigenvalues of Haar unitary random matrices,
also called Circular Unitary Ensemble. For β = 1 and β = 4, the distribution (1.1.11)
corresponds to the eigenvalues of Haar distributed random matrices on the orthogonal and
symplectic groups respectively.

Permutation matrices

This section specifies the random matrices considered here to be random permutation
matrices which are special instances of orthogonal matrices. For n ⩾ 1, let us denote by
Sn the group of permutations of [n] = {1, . . . , n}. For a permutation σ ∈ Sn, its associated
permutation matrix is A = A(σ) = (aij)1⩽i,j⩽n where for 1 ⩽ i, j ⩽ n,

aij := 1σ(j)=i .

We call a permutation matrix any matrix which can be written as the associated matrix
of some permutation. The cycle decomposition of a permutation σ ∈ Sn is the vector
(Ck)1⩽k⩽n where Ck = Ck(σ) is the number of cycles of length k in σ. For k ⩾ 1, let
Bk ∈ Mk(C) be the k×k matrix associated to the permutation having one cycle (1 · · · k):

Bk =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

... . . . . . . ...
0 0 · · · 1 0

 .

Any permutation matrix A = A(σ) for some σ ∈ Sn is conjugate to a block matrix with
Ck(σ) blocks Bk for each 1 ⩽ k ⩽ n. Therefore, the eigenvalues of a permutation matrix
A(σ) are the roots of unity

e
2iπℓ
k , 0 ⩽ ℓ ⩽ k − 1

each occuring with multiplicity Ck(σ).

A measure on the space of permutations yields a measure on the space of permutation
matrices by the map σ 7→ A(σ). Let us introduce a measure on Sn called the Ewens
measure which was first defined in [Ewe72].

Definition 1.1.17 (Ewens measure). The Ewens measure with parameter θ > 0 is the
probability measure dPθ on Sn given by

dP(n)
θ [σ] := θ|σ|

Z
(n)
θ

, (1.1.12)

where |σ| =
∑n
k=1Ck(σ) is the number of cycles of σ and Z(n)

θ is a normalization constant.
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The Ewens measure specialises to the uniform measure for θ = 1. It is an example of a
central measure, that is, a measure which is constant on each conjugacy class of Sn since
the cycle lengths are invariant by conjugation.

1.2 Determinantal Point Processes
Eigenvalues of a random matrix yield a random configuration of points in the complex
plane. The mathematical definition of this object is called a point process. In Section 1.2.1,
we introduce the general theory of point processes. As we are interested in eigenvalues of
random matrices coming from specific models, the corresponding point process will have
more structure and will often be determinantal, see Definition 1.2.4. This class of point
processes is presented in Section 1.2.2 following the lines of [Sos00a; Bor11; Joh06] and
the chapter 4 of [Hou+09].

1.2.1 Point processes

Let X be a Polish space, i.e a complete, separable metric space that we further assume to
be locally compact. In our applications, we will consider subspaces of Rn for some n ⩾ 1.
Denote by B its Borel sigma-algebra. An atomic measure µ : B → N ∪ {+∞} is locally
finite if for every compact subset K ⊂ X , µ(K) < +∞. Such a measure can be written
as µ =

∑
i∈I δxi for a countable family (xi)i∈I of points in X . Let Ma(X ) be the space

of atomic measures on X . We endow Ma(X ) with the smallest sigma-algebra that makes
the counting applications B 7→ µ(B) measurable for all B ∈ B.
Definition 1.2.1 (Point process). A point process on X is a random variable with values
in Ma(X ).
For a point process X and a Borel subset B, the (possibly infinite) random variable X(B)
counts the number of points of X which lie in B. For given k ⩾ 1, B1, . . . , Bk ∈ B and
open intervals I1, . . . , Ik ⊂ [0,∞), the set of measures µ ∈ Ma(X ) such that for every
1 ⩽ j ⩽ k, µ(Bj) ∈ Ij is called a cylinder. The sigma-algebra on Ma(X ) is generated by
those cylinders. To specify the law of a point process, it therefore suffices to give the joint
distribution of (X(Bj))1⩽j⩽k for Borel subsets B1, . . . , Bk.

A fundamental example is given by Poisson point processes. For µ a locally finite Borel
measure on X , the Poisson process with intensity µ is the point process defined by the
following property : for every k ⩾ 1 and pairwise disjoint Borel subsets B1, . . . , Bk, the
random variables X(B1), . . . , X(Bk) are independent and X(Bi) has Poisson distribution
of parameter µ(Bi).

We will mostly work with simple point processes, that are, point processes X for which
for every x ∈ X , X({x}) ∈ {0, 1} almost surely. As random variables (X(B))B∈B are of
main importance, we introduce the correlation functions as in [Hou+09], also called the
joint intensities of a point process X.
Definition 1.2.2 (Correlation functions). Let X be a simple point process on X and let
µ be a Radon measure on X . We say that X has correlation functions (ρk)k⩾1 where
ρk : X → [0,∞) with respect to the measure µ if for every k ⩾ 1 and for every pairwise
disjoint subsets B1, . . . , Bk ⊂ B,

E
[
k∏
i=1

X(Bi)
]

=
∫∏

i
Bi

ρk(x1, . . . , xk)µ(dx1) . . . µ(dxk). (1.2.1)
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with ρk(x1, . . . , xk) = 0 whenever xi = xj for some 1 ⩽ i ̸= j ⩽ k.

Example 1.2.3. An important example of a point process which admits correlation func-
tion is given by realisation of n dimensional distributions. Let (X1, . . . , Xn) be a random
vector having joint symmetric density p(x1, . . . , xn) with respect to the Lebesgue measure
on Rn. Then, the point process X =

∑n
k=1 δXk on R has correlation functions given by

ρk(x1, . . . , xk) = n!
(n− k)!

∫
Rn−k

p(x1, . . . , xn)dxk+1 . . . dxn. (1.2.2)

Another viewpoint on correlation functions is to consider moments of variables

Xn(B1 × · · · ×Bn) := X(B1)(X(B2) − 1) . . . (X(bn) − n+ 1)

for Borel subsets (Bi)1⩽i⩽n ∈ B. Recall that X is endowed with a given reference measure
µ. Define the measure µn : (B1 ×· · ·×Bn) 7→ E[Xn(B1 ×· · ·×Bn)]. In the case where the
measure µn is absolutely continuous with respect to the measure µ, the k-th correlation
function is precisely the Radon-Nikodym derivative

ρk(x1, . . . , xk) = dµk

dµ (x1, . . . , xk).

Correlation functions allow for computations on moments of variables X(B) for B ∈ B.
For instance,

E[X(B)] =
∫
B
ρ1(x)µ(dx)

V ar[X(B)] =
∫
B2
ρ2(x, y)µ(dx)µ(dy) +

∫
B
ρ1(x)µ(dx) −

(∫
B
ρ1(x)µ(dx)

)2
.

1.2.2 Determinantal case

The point processes that we consider here are those whose correlation functions have a
determinantal form ρk(x1, . . . , xk) = det(K(xi, xj))1⩽i,j⩽k for a given measurable function
K : X 2 → C called the kernel. Following [Hou+09], we make the following assumptions
on the kernel K.

(i) We assume that K is locally square integrable, meaning that for any compact C ⊂ X ,∫
C2

|K(x, y)|2µ(dx)µ(dy) < ∞.

(ii) K is Hermitian : K(x, y) −K(y, x) µ⊗ µ almost every (x, y).

(iii) K is positive : det(K(xi, xj))1⩽i,j⩽k ⩾ 0, µ⊗k almost every (x1, . . . , xk).

(iv) The associated integral operator K : L2(X , µ) → L2(X , µ) defined by

Kf : x 7→
∫

X
K(x, y)f(y)µ(dy)

is locally of trace class meaning that for every compact set C ⊂ X , the eigenvalues
(λCj )j of the compact restricted operator KC on L2(C, µ) satisfy

∑
j |λCj | < ∞.
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Definition 1.2.4 (Determinantal Point Process). Let K be a kernel satisfying the as-
sumptions above. We say that X is a determinantal point process with kernel K with
respect to the measure µ if X has correlation functions (ρk)k⩾1 such that for every k ⩾ 1,

ρk(x1, . . . , xk) = det(K(xi, xj))1⩽i,j⩽k .

For a given kernel, Definition 1.2.4 does not provide any existence result of a determinantal
point process with this kernel. We give a necessary and sufficient condition due to Macchi
[Mac75] and Soshnikov [Sos00a], which is Theorem 4.5.5 of [Hou+09].

Theorem 1.2.5 (Existence of DPP associated to a kernel, [Hou+09]). Let K be a kernel
such that the associated integral operator K is Hermitian and locally of trace class. Let

Spec(K) := {z ∈ C | z · id − K is not invertible}

be the spectrum of K. Then, there exists a determinantal point process with kernel K if
and only if

Spec(K) ⊂ [0, 1].

Before introducing examples related to random matrices, we present an important class
of density functions pn such that if (X1, . . . , Xn) is sampled from pn, the random point
process

∑n
i=1 δXi is determinantal. Let µ be a Radon measure on X and let (φi)1⩽i⩽n be

orthonormal functions in L2(X , µ), that is, for 1 ⩽ i, j ⩽ n,

∫
X
φi(x)φj(x)µ(dx) = δij .

Let pn(x1, . . . , xn) be the probability density given by

pn(x1, . . . , xn) = 1
Zn

| det(φi(xj))1⩽i,j⩽n|2µ(dx1) . . . µ(dxn). (1.2.3)

with

Zn =
∫

Xn
det(φi(xj))i,j det(φi(xj))i,jµ(dx1) . . . µ(dxn)

=
∑

σ,τ∈Sn
ϵσϵτ

∫
X

n∏
i=1

φσ(i)(xi)φτ(i)(xi)µ(dxi)

= n!

Proposition 1.2.6 (Symmetric density gives determinantal point process, [Hou+09]).
Let pn(x1, . . . , xn) be a density as in (1.2.3) associated to orthonormal functions (φi)1⩽i⩽n
and let (X1, . . . , Xn) be a random vector with density pn. The point process

∑n
i=1 δXi is a

determinantal point process with respect to the measure µ with kernel

Kn(x, y) =
n∑
i=1

φi(x)φi(y).

The proof of Proposition 1.2.6 can be found in Section 4.5 [Hou+09].
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1.2.3 Examples from Random Matrix Theory

This section bridges the results from Section 1.2.2 with the examples discussed in Section
1.1.2. We now interpret the eigenvalues of random matrices as a point process via the
random atomic measure

n∑
i=1

δλi .

We refer to this process as the eigenvalue point process.

Our focus will be on two fundamental examples that turn out to be determinantal: the
eigenvalue densities of the Ginibre Ensemble (1.1.3) and the Gaussian Unitary Ensemble
(1.1.5). Both of these densites involve the Vandermonde determinant

∆(x) = ∆(x1, . . . , xn) :=
∏

1⩽i<j⩽n
(xi − xj),

which can be written as
∆(x) = det(φi(xj))1⩽i,j⩽n

where (φi)1⩽i⩽n is any family of polynomials satisfying the condition that φi has degree
i − 1 with leading coefficient 1. In order to recover Proposition 1.2.6, we will consider
families of orthonormal polynomials associated with appropriate measures.

Gaussian Unitary Ensemble

Definition 1.2.7 (Hermite polynomial). The Hermite polynomials (Hn)n⩾0 are the unique
polynomials satisfying

• Hn has degree n and leading coefficient 1,

• They are orthonormal with respect to the Gaussian distribution,∫
R
Hn(x)Hm(x) 1√

2π
e−x2

2 dx = n!δnm.

Consider the Gaussian measure on R defined by µ(dx) = 1√
2π e−x2

2 dx where dx is the
Lebesgue measure on R. The Hermite polynomials are the orthogonal polynomials with
respect to this measure having leading coefficient one. The density (1.1.5) of eigenvalues
of a GUE matrix of size n can be written in the form (1.2.3) with orthonormal functions
(φi)1⩽i⩽n given by

φi(x) = Hi−1(x) 1√
(i− 1)!(2π)1/4 e−x2

4 .

Therefore, from Proposition 1.2.6, the eigenvalue point process is determinantal on (R,dx)
with kernel

KGUE
n (x, y) = 1√

2π

n∑
i=1

Hi−1(x)Hi−1(y)
(i− 1)! e−(x2+y2)/4. (1.2.4)
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Ginibre Ensemble

To derive the determinantal aspect of the eigenvalues of a Ginibre matrix which are dis-
tributed according to the density (1.1.3), we shall find the analog of the Hermite polyno-
mials for the complex Gaussian measure µ(dz) = 1

π e−|z|2dz on C. This is played by the
monomials (zn)n⩾0 as for n,m ⩾ 0,∫

C
znzm

1
π

e−|z|2dz = n!δnm.

Therefore, the corresponding orthonormal functions (φi)1⩽i⩽n in L2(C, µ) are

φi(z) = zi−1√
π(i− 1)!

e− |z|2
2

so that the Ginibre eigenvalue point process is determinantal with kernel

KGin
n (z, w) = 1

π

n∑
i=1

(zw)(i−1)

(i− 1)! e− |z|2+|w|2
2 . (1.2.5)

1.3 Convergence of empirical eigenvalue distributions

This section presents convergence results of eigenvalue distributions as the dimension of
the matrix goes to infinity. Motivations for considering such limits first appeared in the
work of Wigner [Wig55; Eug58] in the context of quantum mechanics around 1950. Wigner
proved that under appropriate normalization, the empirical eigenvalue distribution of GUE
matrices converges on average to a limit law known as the semicircular distribution, see
Theorem 1.3.10 below. This result was later extended by Arnold [Arn71; Arn67]. For
Girko random matrices, the analog of the semicircular distribution is the circular law
which is the uniform distribution on the unit disk in the complex plane. The convergence
of the average empirical eigenvalue distribution was first established by Metha [Meh67]. for
the Ginibre Ensemble while Edelman established the result for the case where entries are
real Gaussians. Silverstein further strengthened these results by extending the convergence
from expectation to almost sure convergence for Ginibre matrices. These early results were
largely based on explicit formulas for the joint density of eigenvalues in the Gaussian case.
A more general approach, aiming to extend these results beyond Gaussian ensembles to
arbitrary distributions was initiated by Girko [Gir84] and further developed by Bai [Bai97].
The most general version was eventualy obtained by Tao and Vu [TV08] together with
Krishnapur [TVK10].

1.3.1 Convergence of random measures

Recall that the empirical eigenvalue distribution of a matrix An with eigenvalues (λi)1⩽i⩽n
is the probability measure

µn = 1
n

n∑
i=1

δλi .

We endow the space P(C) of probability measures on C with the topology of weak conver-
gence, defined with respect to continuous and bounded functions. The weak convergence
of a sequence (µn)n⩾1 to a limiting measure µ is denoted by µn =⇒ µ.
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Since we are dealing with random measures, we say that µn converges weakly to µ almost
surely if

µn =⇒ µ almost surely,
meaning that with probability one, for every continuous and bounded function f ,∫

fdµn →
∫
fdµ.

For a random measure µ, we denote by E[µ] the probability measure defined by

E[µ](B) = E[µ(B)]

for each borel subset B. In the case where µ is the empirical eigenvalue distribution, the
measure E[µ] is called the mean or average eigenvalue distribution. Note that E[µ] is a
deterministic measure.

1.3.2 Methods

We now describe classical methods for proving the convergence of empirical eigenvalue dis-
tributions. The first two approaches, the moment method and the Stieltjes transform, are
particularly well-suited for analyzing eigenvalues of Hermitian random matrices. In Sec-
tion 1.3.2, we introduce Hermitization, a powerful technique developed by Girko [Gir84],
see also [BS06]. This method extends the scope of spectral analysis beyond Hermitian
matrices.

The moment method

Let us consider the case of probability measures on R. For µ ∈ P(R), its k-th moment for
k ⩾ 1 is given by ∫

xk µ(dx),

provided that
∫

|x|k µ(dx) < ∞. If this condition holds for all k ⩾ 1, we define the
sequence (∫

xk µ(dx)
)
k⩾1

as the moments of µ. In general, for a given sequence (mk)k⩾1 of real numbers, there may
be multiple probability measures µ having this sequence as their moments. A probability
measure µ is said to be determined by its moments if it is the unique probability measure
on R with the moment sequence (∫

xk µ(dx)
)
k⩾1

.

A measure µ with compact support, meaning for some M > 0, µ([−M,M ]) = 1, is always
uniquely determined by its moments. This follows from the Stone–Weierstrass theorem.
For more general measures, a sufficient condition for moment determinacy is given by
Carleman’s criterion. We refer to [BS06, Lemma B.1] for this result and to Appendix B
for further details on the moment method.
Lemma 1.3.1 (Carleman’s criterion, [BS06]). Let µ ∈ P(R) be a probability measure on
R having moments (mk)k⩾1. Assume that∑

k⩾1
m

− 1
2k

2k < ∞.

Then µ is uniquely determined by its moments.
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The moment method relies on the following result.

Lemma 1.3.2 (Moment method, [BS06]). Let µ ∈ P(R) be a measure. Let (µn)n⩾1 be a
sequence of probability measures such that for each n ⩾ 1, µn has moments (mn,k)k⩾1. If

1. µ is uniquely determined by its moments,

2. ∀k ⩾ 1 : lim
n→∞

mn,k = mk,

then as n → ∞, µn =⇒ µ.

From Lemma 1.3.2, in order to show that almost surely, µn =⇒ µ for a measure µ
characterised by its moments, it suffices to show that moments of µn converge almost
surely to moments of µ:

∀k ⩾ 1 :
∫
xkµn(dx) →

∫
xkµ(dx) a.s.

A practical way to achieve this goal is to show that for every k ⩾ 1, we have

1. E[
∫
xkµn(dx)] → E[

∫
xkµ(dx)],

2. V ar[
∫
xkµn(dx) −

∫
xkµ(dx)] = O(n−2).

In the case where µn is the empirical eigenvalue distribution of a matrix An, its moments
have an explicit expression. For k ⩾ 1,∫

xkµn(dx) = 1
n

n∑
i=1

λki = 1
n

Tr
[
Akn

]
.

Using the moment method to show convergence of empirical eigenvalue distributions re-
duces to study asymptotics of traces of random matrices. For points 1. and 2. above to be
computed, the entries of the random matrix should have all their moments finite, which
can seem quite restrictive for our model of random matrices.
However, using a truncation technique, one is able to lower these assumptions up to nec-
essary and sufficient conditions on first moments of the entries only. For examples of
application of the truncation technique, we refer to [BS06] where it is used for various
matrix models to show the convergence of empirical eigenvalue distributions.

The Cauchy transform method

This section presents a complex analysis technique used to establish the convergence of
the empirical eigenvalue distribution. For more details on the Cauchy transform, we refer
to Appendix B. in [BS06] and Section 3.1 in [MS17].

Definition 1.3.3 (Cauchy transform). Let µ be a measure on R. The Cauchy transform
of µ is the complex valued function Cµ defined in the upper half plane C+ = {z ∈ C :
ℑ(z) > 0} by

Cµ(z) :=
∫
R

1
z − x

µ(dx), z ∈ C+.

The Cauchy transform is analytic on C+ with values in the lower half plane C− = {z ∈
C : ℑ(z) < 0}. It uniquely characterizes the measure µ by the inversion formula given in
Lemma 1.3.4; see [MS17] for a proof.
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Lemma 1.3.4 (Inversion formula, [MS17]). Let µ be a probability measure on R. For
a < b, we have

µ((a, b)) + µ({a, b}) = − lim
y→0+

1
π

∫ b

a
ℑ(Cµ(x+ iy))dx.

From this inversion formula, we deduce that if two probability measures µ and ν have the
same Cauchy transform, then they must be equal:

Cµ = Cν =⇒ µ = ν.

In addition to characterise the probabilty measure, the Cauchy transform is a powerful tool
to derive weak convergence of a sequence of measures. For z ∈ C+, one has 1

|z−x| ⩽
1

ℑ(z)
so that x 7→ 1

z−x is a continuous, bounded function of x from which one derives

If µn =⇒ µ then, ∀z ∈ C+ : Cµn(z) → Cµ(z).

Remarkably, the converse is also true.

Proposition 1.3.5 (Convergence of Cauchy transform implies weak convergence, [MS17]).
Let (µn)n⩾1 and µ be probability measures on R. If

∀z ∈ C+ : Cµn(z) → Cµ(z),

then, µn =⇒ µ.

Thus, the problem of proving weak convergence reduces to establishing the pointwise
convergence of the Cauchy transforms. If one exhibits a limiting function C(z) for all
z ∈ C+, it remains to check that this function is the Cauchy transform of some probability
measure. A sufficient criterion for this, which can be viewed as the converse of the property

lim
y→∞

iyCµ(iy) = µ(R) = 1

for a probability measure µ, is given below.

Proposition 1.3.6 (Characterisation of Cauchy transforms, [MS17]). Let C : C+ → C−

be an analytic function such that lim supy→∞ y|C(iy)| = 1. Then, there exists a unique
probability measure µ on R such that C(z) = Cµ(z).

When µn is the empirical eigenvalue distribution of a matrix An, we have the identity

Cµn(z) =
∫
R

1
z − t

µn(dx) = − 1
n

Tr[(An − zIn)−1].

For 1 ⩽ k ⩽ n, denote by A(k) the matrix of size n − 1 obtained by removing the k-th
row and column of A. The matrices (A(k))1⩽k⩽n are called the majors of A. If A and its
majors are invertible,

Tr[A−1] =
n∑
k=1

1
akk − α∗

k(A(k))−1αk

where αk is the k-th row of A with entry akk removed. See Section A.1.3 in [BS06] for a
proof of this result. Consequently,

Cµn(z) =
n∑
k=1

1
akk − α∗

k(A
(k)
n − zIn−1)−1αk

.
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If one has the asymptotic akk − α∗
k(A

(k)
n − zIn−1)−1αk = g(z, Cµn(z)) + o(1), the limit

Cauchy transform C(z) can be determined by the functional equation

C(z) = 1
g(z, C(z)) .

We refer to [BS06] for applications of this technique.

Hermitization technique

The two previous methods apply to probability measures on the real line which encompass
empirical eigenvalue distributions of Hermitian matrices. However, they do not extend
to general matrices as their eigenvalues are generally complex. To study the empirical
eigenvalue distributions of non-Hermitian matrices, Girko [Gir84] introduced a powerful
technique called hermitization presented here. We refer to [BC12] and [TVK10] for more
details. Let P ′(C) the probability measures on C for which log | · | is integrable at infinity.

Definition 1.3.7 (Logarithmic potential). Let µ ∈ P ′(C). The logarithmic potential of µ
is the function Uµ defined on C by

Uµ(z) := −
∫
C

log |z − x|µ(dx). (1.3.1)

As for the Cauchy transform of probability measures on R, the logarithmic potential
characterises the measure.

Lemma 1.3.8 (Logarithmic potential characterises the measure, [BC12]). Let µ and ν be
two measures in P ′(C) such that almost everywhere Uµ = Uν . Then µ = ν.

For µn the empirical eigenvalue distribution of a matrix An we have

Uµn(z) = − 1
n

log | det(An − zIn)|.

Using determinant properties, this can be rewritten as

Uµn(z) = − 1
n

log det
(√

(An − zIn)(An − zIn)∗
)

= −
∫

log(x)νn,z(dx),

where
νn,z = νn,z(An) := µn

(√
(An − zIn)(An − zIn)∗

)
is the empirical eigenvalue distribution of the Hermitian matrix

√
(An − zIn)(An − zIn)∗.

The eigenvalues of
√
AA∗ are called the singular values of A. Let us denote them by

s1(A) ⩾ · · · ⩾ sn(A) ⩾ 0 so that νn,z = 1
n

∑n
k=1 δsk(An−zIn). The singular values and the

eigenvalues are related by
n∏
k=1

|λk(A)| =
n∏
k=1

sk(A)

and by the Weyl inequalities [Wey49]

∀1 ⩽ k ⩽ n :
k∏
i=1

|λi(A)| ⩽
k∏
i=1

si(A).

We have therefore linked the logarithmic potential of a non-Hermitian matrix A with
the empirical eigenvalue distribution of the Hermitian matrix

√
(A− zI)(A− zI)∗. The
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convergence of the eigenvalue distribution for non-Hermitian matrices reduces to the con-
vergence of the eigenvalue distribution of

√
(A− zI)(A− zI)∗ together with some inte-

grability condition as log is not a bounded function on R⩾0. This leads to Proposition
1.3.9 below.

Proposition 1.3.9 (Hermitization, [BC12; TVK10]). Let (An)n⩾1 be matrices where An ∈
Mn(C). Assume that there exists a family (νz)z∈C of probability distributions on R⩾0 such
that, for almost every z ∈ C, almost surely,

(i) νn,z =⇒ νz,

(ii) log is uniformly integrable for (νn,z)n⩾1.

Then, there exists a probability measure µ ∈ P ′(C) such that

(iii) almost surely, µn =⇒ µ

(iv) almost everywhere, Uµ(z) = −
∫∞

0 log(x)νz(dx).

1.3.3 Wigner matrices and the semicircular law

In this section, we restrict our attention to Wigner matrices as in Definition 1.1.7. We give
a general version of convergence of the empirical eigenvalue distribution for such matrices
which can be found in [BS06].

Theorem 1.3.10 (Wigner’s semi-circular law, [BS06]). Let An be a Wigner matrix of
size n such that entries above the diagonal have unit variance. Assume that all entries are
centered. Then, almost surely,

µn

( 1√
n
An

)
=⇒ µs.c

where
µs.c(dx) := 1

2π
√

4 − x21|x|<2dx.

The limit probability distribution µs.c is called the semi-circular distribution, see Figure
1.1. Its Cauchy transform is given by Cµs.c(z) = z−

√
z4−4
2 . Theorem 1.3.10 is the first

example of universality encountered as it holds for arbitrary pairs of distributions for the
diagonal and above diagonal entries as long as the former has unit variance.

Remark 1.3.11. Let us make a few comments.

1. In the case where the entries above the diagonal have a general variance σ2 > 0, the
limit distribution obtained is the scaled semicircular law with density

1
2πσ2

√
4σ2 − x21|x|<2σdx.

2. The assumption that all entries are identically distributed can be relaxed. Consider
a Wigner matrix where the diagonal and above diagonal entries are independent but
not necessarily with the same law and such that the law of each entry might depend
on n. Together with the condition

∀η > 0 lim
n→∞

1
n2

n∑
j,k=1

E
[
|a(n)
jk |21|a(n)

jk
|⩾η

√
n

]
,

the conclusion of Theorem 1.3.10 holds.



28 CHAPTER 1. RANDOM MATRIX THEORY

Figure 1.1: Illustration of Theorem 1.3.10. Eigenvalues of a scaled GUE matrix of size
103. The semicircular density is plotted in red.

3. The second order moment condition for the above diagonal entries is necessary and
also sufficient in Theorem 1.3.10. In the case of heavy tail entries, the empirical
eigenvalue distribution converges to other distributions depending on the parameter
of the stable law, see [BC94], [BDG09] and [BCC11].

1.3.4 Girko matrices and the circular law

This section presents the analog of Wigner’s theorem for Girko matrices, that is, matrices
with i.i.d. entries without the Hermitian condition. The general version below can be
found in [TVK10], see also [BC12] for more details on this result.
Theorem 1.3.12 (Circular law, [TVK10]). Let An = (aij)1⩽i,j⩽n where (aij)i,j⩾1 are
i.i.d. random variables with E[aij ] = 0 and E[|aij |2] = 1. Then, almost surely,

µn

( 1√
n
An

)
=⇒ µc, (1.3.2)

where
µc(dz) := 1

π
1|z|<1dz.

The probability distribution µc(dz) = 1
π1|z|<1dz is called the circular law. It can be seen

as the non-Hermitian analog of the semicircular distribution.
Let νn,z = νn,z

(
An√
n

)
. The proof of Theorem 1.3.12 relies on Proposition 1.3.9 for which

one has to show the existence of probability distributions (νz)z∈C such that almost surely
and almost everywhere, νn,z =⇒ νz, together with uniform integrability condition of
log |.| for (νn,z)n⩾1. For more details on the first part, we refer to Section 4.5 of [BC12].
To prove uniform integrability, it is sufficient to show that for z ∈ C, one can find p > 0
such that almost surely

lim sup
n→∞

∫
x−pνn,z(dx) < ∞ and lim sup

n→∞

∫
xpνn,z(dx) < ∞. (1.3.3)
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Figure 1.2: Illustration of Theorem 1.3.12. Eigenvalues of a scaled Ginibre matrix of size
500. The unit circle is plotted in red.

The second condition can be ensured for p = 2 using that for 1 ⩽ i ⩽ n, si
(

1√
n
An − zIn

)
⩽

si
(

1√
n
An
)

+ |z| and that by the law of large numbers, almost surely as n → ∞,

∫
x2νn,z

( 1√
n
An

)
dx = 1

n2 Tr[AnA∗
n] = 1

n2

∑
1⩽i,j⩽n

|Aij |2 → E
[
|A11|2

]
.

The first condition is the most challenging to establish as it involves a detailed analysis of
the smallest singular values of non-Hermitian random matrices. This analysis was carried
out in [TVK10; TV08].

1.4 Convergence of extreme eigenvalues

The previous Section 1.3 established results on the convergence of the empirical eigen-
value distribution, which can be interpreted as a global characterization of the eigenvalue
spectrum. However, this does not necessarily imply that the spectral radius, or in the
case of Hermitian matrices, the largest eigenvalue, converges to the edge of the limiting
distribution. The work on extreme eigenvalues of sample covariance matrices was initiated
by Geman [Gem80], who showed the convergence of the largest eigenvalue under moment
conditions on the entries. Later, Bai, Krishnaiah, and Yin [YBK88] established that a
fourth-moment condition is sufficient for this convergence. The fourth order moment was
also proved to be necessary in [BSY88] as, if it is infinite, the limsup of the largest eigen-
value tends to infinity almost surely. For Wigner matrices with real entries, Bai and Yin
[BY88] proved that the fourth order moment condition is both necessary and sufficient
for the largest eigenvalue to converge to the boundary of the semicircular distribution.
This result was later extended to all Wigner matrices with complex entries by Bai and
Silverstein [BS06] as presented in Theorem 1.4.3.

1.4.1 Wigner matrices and the Tracy Widom law

This section is dedicated to main results on the convergence of the largest eigenvalue of a
Wigner matrix to the edge of the semicircular distribution. We refer the reader to chapter
5 of [BS06] for more details on the results presented. In this section, An is a Wigner
matrix of size n ⩾1.
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Convergence of the largest eigenvalue

Denote by
ρn = ρ(An/

√
n) := 1√

n
max

1⩽k⩽n
|λk(An)|

the spectral radius of 1√
n
An, that is, the eigenvalue with the largest modulus. Under the

assumptions of Theorem 1.3.10, we know that when entries above the diagonal having unit
variance,

lim inf
n→∞

ρn ⩾ 2.

Theorem 1.4.1 shows that under moment assumptions, the largest eigenvalue converges to
the boundary value 2 of the semicircular distribution.

Theorem 1.4.1 (Extreme eigenvalues of Wigner matrices, [BS06]). Let An be a Wigner
matrix and let σ2 > 0. The conditions

(i) E[a2
11] < ∞,

(ii) E[a12] = 0,

(iii) E[|a12|2] = σ2,

(iv) E[|a12|4] < ∞,

are equivalent to the almost sure convergence

(j) ρn → 2σ.

By a symmetry argument, under the same assumptions of Theorem 1.4.1, one can show
that the smallest eigenvalue 1√

n
min1⩽k⩽n λk(An) converges almost surely to −2σ.

Condition (iv) of Theorem 1.4.1 is the main difference from the assumptions of Theo-
rem 1.3.10 which only assumed a second order moment condition. One can derive the
convergence of the largest eigenvalue under weaker assumptions than the fourth order mo-
ment for real-valued entries above the diagonal satisfying certain tail conditions. However,
the convergence to 2σ will only hold weakly or equivalently, in probability, see Theorem
5.3 in [BS06].

Tracy-Widom fluctuations

The next step on the convergence of the largest eigenvalue of Wigner matrices is to know
the fluctuations around the limit value 2σ of Theorem 1.4.1. This can be seen as analogous
to the central limit theorem, which follows after the law of large numbers. However, unlike
the Gaussian distribution, the fluctuations in this case follow the Tracy-Widom distribu-
tion introduced in Definition 1.4.2. It is named after Tracy and Widom who obtained
estimates for convergence rate and fluctuations for GUE matrices [TW94]. In [TW96],
they extended their result to β-Hermite ensembles for β ∈ {1, 2, 4} covering orthogonal
and symplectic ensembles. The extension to general Wigner matrices, known as edge uni-
versality, is due to various contributions including [Sos99; PS07; TV10] and [LY14].

As we want to study the behavior around the edge of the semicircular distribution, we
expect, as discussed in [Spe20], that the number of eigenvalues in [2−t, 2] for t > 0 behaves
as

n

∫ 2

2−t

1
2π
√

4 − x2dx ∼ 2n
3π t

3/2
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as t → 2. The appropriate scaling suggested by this expression is t ∼ n−2/3 so that one
should consider n2/3(ρn − 2) in order to see non trivial fluctuations. This scaling corre-
sponds to the correct formulation of the Tracy-Widom fluctuations.

The Tracy-Widom distribution is defined in terms of the Airy function, Ai : R → R
which is the solution to the differential equation

u′′(t) = tu(t)

having asymptotic behavior

Ai(t) ∼ 1
2
√
π
t−1/4e− 2

3 t
−3/2 as t → ∞.

Definition 1.4.2 (Tracy-Widom distribution). Let q : R → R be the solution to the differ-
ential equation q(t)′′ = tq(t) + 2q3(t) satisfying q(t) ∼ Ai(t) as t → ∞. The Tracy-Widom
distribution is the probability distribution on R with cumulative distribution function

FTW (x) := exp
(

−
∫ ∞

x
(t− x)q2(t)dt

)
.

We now present the general form of edge universality as given in [LY14]. This stronger
version of fluctuation analysis provides a necessary and sufficient condition for the conver-
gence of joint distribution function of the k largest eigenvalues, yielding the Tracy-Widom
distribution for the largest eigenvalue by taking k = 1.

Theorem 1.4.3 (Edge universality for Wigner matrices, [LY14]). Let An be a Wigner
matrix such that entries above the diagonal have unit variance and the diagonal entries
have finite variance. Let the eigenvalues of 1√

n
An be ordered as λn ⩽ · · · ⩽ λ1. The

following statements are equivalent

(i) lim
t→∞

t4 · P[|a12| > t] = 0

(ii) For any fixed k ⩾ 1, the joint distribution function

P
[
n2/3(λ1 − 2) ⩽ t1, . . . , n

2/3(λk − 2) ⩽ tk
]

converges to the Tracy-Widom joint distribution.

Note that the assumption (i) of Theorem 1.4.3 is strictly stronger than the fourth-order
moment condition in Theorem 1.4.1 which ensures the convergence of the largest eigenvalue
to 2. As shown in [LY14], if this condition does not hold, then

lim sup
n→∞

P[ρn ⩾ 3] > 0.

1.4.2 Girko matrices and the Gumbel law

This section addresses the convergence of extreme eigenvalues for i.i.d. matrices. For the
rest of this section, An denotes a Girko matrix with centered entries.
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Convergence of the spectral radius

Denote by ρn the spectral radius of 1√
n
An. Under the assumptions of Theorem 1.3.12, the

circular law implies that
lim inf
n→∞

ρn ⩾ 1.

The analogous question in this setting, relative to the convergence of the largest eigenvalue
in Wigner matrices, concerns the convergence of the spectral radius ρn. The convergence
of the spectral radius for i.i.d. matrices was first established by Mehta [Meh04] in the inte-
grable case of the Ginibre Ensemble, see chapter 15 therein. The result was later extended
by Geman [Gem86] to entries with moments bounded by polynomials and subsequently
by Bai and Yin [BY86] to entries having finite fourth moment. The fourth order moment
condition was later reduced by Bordenave, Chafaï and García-Zelada [BCG22] to an opti-
mal second-order moment condition. We present this latter result as its proof techniques
are closely related to methods discussed in Chapters 2, 4 and 5 of this thesis.

Theorem 1.4.4 (Convergence of the spectral radius of Girko matrices, [BCG22]). Let An
be a Girko matrix whose entries have unit variance. Then, in probability,

lim
n→∞

ρn = 1. (1.4.1)

Gumbel fluctuations

Similar to the Wigner matrix case, one can study the fluctuations of the spectral radius
around the limit 1. The counterpart to the Tracy-Widom distribution in this context is
the Gumbel distribution.

Definition 1.4.5 (Gumbel distribution). The Gumbel distribution is the probability dis-
tribution on R with cumulative distribution function

FG(x) := e−e−x
.

Rider [Rid03] proved that the spectral radius of Ginibre matrices has Gumbel fluctua-
tions. A first step towards the universality of Gumbel fluctuations for the spectral radius
was proved for two-dimensional Coulomb gases with a radially symmetric potential in
[CP14]. Note that for such distributions over random matrix ensembles, the limit empiri-
cal eigenvalue distribution is supported on a centered annulus in the complex plane which
is more general than the unit circle corresponding to the quadratic potential, that is, for
the Ginibre Ensemble. In a recent work, Cipolloni, Erdős and Xu [CEX23] established the
edge universality of Gumbel fluctuations for i.i.d. matrices. We state their main result as
Theorem 1.4.6.

Theorem 1.4.6 (Gumbel fluctuations for i.i.d. matrices, [CEX23]). Let γn = log(n/2π)−
2 log log(n) and let An be a matrix of size n with i.i.d. complex entries. Assume that the
entries satisfy E[a11] = 0, E[|a11|2] < ∞ and E[a2

11] = 0. Moreover, assume that entries
have finite moments:

∀p ⩾ 0 : E[|a11|p] ⩽ Cp (1.4.2)

for some constants (Cp)p⩾1. Then, as n → ∞, the scaled spectral radius

√
4nγn

(
ρn − 1 −

√
γn
4n

)
(1.4.3)

converges in distribution to a Gumbel distributed random variable.
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In [CEX23], they furthermore prove that the argument of the largest eigenvalue converges
in distribution to a random variable following the uniform law on the unit circle inde-
pendent of the modulus. Their result also proves the convergence of moments of (1.4.3)
to moments of the Gumbel distribution. The authors further argue that the moment
condition (1.4.2) can be relaxed to finiteness up to some sufficiently large p0.

1.4.3 Wigner to Girko interpolation

We conclude Section 1.4 by mentioning an interpolation due to Johansson [Joh07] which
unifies the two limiting distributions for the extreme eigenvalue: the Tracy-Widom distri-
bution from Wigner matrices and the Gumbel law from Girko matrices. This interpolation
relies on a one-parameter determinantal point process for which the distribution of the
last particle interpolates between the Tracy-Widom and the Gumbel distributions. For
α > 0, define the kernel Kα : R2 → R by

Kα(x, y) :=
∫
R

eαt

eαt + 1 Ai(x+ t)Ai(y + t) dt.

The kernel Kα is related to the distribution of the KPZ equation [ACQ11], and to multi-
plicative statistics of the Airy determinantal random point process [BG16]. The kernel Kα

defines a trace class operator in L2(a,∞). Let Xα be a determinantal process with kernel
Kα. As for any t ∈ R,

∫∞
t Kα(x, x)dx < ∞, one can compute the cumulative distribution

function of the largest particle which is given by the Fredholm determinant formula

Fα(t) = P[X((t,∞)) = 0] =
∑
n⩾0

(−1)n

n!

∫
(t,∞)n

det(Kα(xi, xj))1⩽i,j⩽ndx1 . . . dxn.

The main result of [Joh07] is the following pair of convergences of the cumulative distri-
bution function for the last particle of Xα to Gumbel and Tracy-Widom ones.

Proposition 1.4.7 (Gumbel to Tracy-Widom interpolation, [Joh07]). Let FG and FTW
be the cumulative distribution functions of the Gumbel and Tracy-Widom laws respectively.
For every x ∈ R,

lim
α→0+

Fα

(
x

α
− 3

2α log(4πα)
)

= FG(x),

lim
α→∞

Fα(x) = FTW (x).
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Chapter 2

Characteristic polynomials

This chapter focuses on the characteristic polynomials of random matrices. Unlike the
previous chapter which examines the eigenvalue point process, this approach treats the
characteristic polynomial as a random function. Under appropriate normalization, the
goal is to establish its convergence to a well-defined limit analytic function.

The study of characteristic polynomials in random matrix theory serves two main purposes.
The first approach starts with a given random matrix model and proves the convergence of
its characteristic polynomial. This, in turn, provides insight into the spectral properties of
the matrix. Beyond spectral analysis, limits of characteristic polynomials involve random
functions that are of independent interest. For instance, in the case of centered Girko
matrices, the limiting function is the exponential of a Gaussian planar function which has
been studied independently, see [Hou+09].

A second perspective involves using characteristic polynomials to reinterpret existing prob-
lems by connecting them to well-chosen random matrices. This approach was used by
Keating and Snaith [KS00], who related the characteristic polynomial of Haar unitary
matrices to the Riemann Zeta function. Their work led to a conjecture on the moments of
the Zeta function which was motivated by Montgomery’s conjecture [Mon73] in analytic
number theory and the work of Rudnick and Sarnak [RS96] on the connection between
zeros of L-functions and random matrices. Characteristic polynomials also appear in var-
ious other contexts, notably in statistical physics where they are related to log-correlated
gases and Gaussian fields, see [BK22] for an overview.

2.1 Random characteristic polynomials and traces
The central object in this chapter is the characteristic polynomial

pn(z) := det (In − zAn)
of a random matrix An. We aim to study its convergence as a random variable taking
values in the space of holomorphic functions endowed with the topology of local uniform
convergence. The coefficients (c(n)

k )0⩽k⩽n of pn defined via

pn(z) =
n∑
k=0

c
(n)
k zk,

are known as the secular coefficients. They are related to traces of powers of An by

c
(n)
k = Pk

(
Tr[An], . . . ,Tr

[
Akn

])
35
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where (Pk)k⩾0 is a family of polynomials independent of n. Therefore, the study of sec-
ular coefficients and characteristic polynomials can be done via the convergence of traces(
Tr
[
Akn

])
k⩾1

. One can further highlight the relation with traces by expanding the loga-
rithm

log pn(z) = −
∑
k⩾1

zk

k
Tr
[
Akn

]
(2.1.1)

as a formal identity. If one shows the joint convergence of traces in (2.1.1) to some family
of coefficients, a natural candidate for the limiting function would be the analytic function
having these coefficients. This point of view has been used in various contexts, see for
instance [BCG22; Cos23; CLZ24; NPS23]. As we will see in the results below, the limiting
functions for characteristic polynomials of large matrices often exhibit structured form
involving the exponential of a random power series.

2.2 Unitary matrices
We begin with characteristic polynomial of unitary matrices. For An ∈ U(n), its eigen-
values are located on the unit circle S1 = {z ∈ C | |z| = 1}. Recall the notation
D = {z ∈ C | |z| < 1} for the open unit disk in the complex plane.

2.2.1 Circular Ensembles

The first result we provide concerns eigenvalues sampled from the Circular β-Ensemble
distribution (1.1.11). When β = 2, the distribution corresponds to the eigenvalue dis-
tribution of Haar-distributed unitary matrices. Motivated by the logarithmic expansion
(2.1.1), a natural approach to studying the convergence of the characteristic polynomial
is through the convergence of traces. Convergence in law for traces were first established
for Haar matrices by Diaconis and Shahshahani [DS94], and later extended to any values
of β > 0 by Jiang and Matsumoto [JM15], using tools from symmetric function theory.

Theorem 2.2.1 (Convergence of traces for CβE, [JM15]). Let ℓ ⩾ 1 and let An be a
unitary matrix whose eigenvalues follow the Circular β-Ensemble distribution (1.1.11).
Then, as n → ∞, we have the convergence in distribution:

(
Tr [An] , . . . ,Tr

[
Aℓn

])
→
√

2
β

(X1,
√

2X2, . . . ,
√
ℓXℓ),

where (Xk)1⩽k⩽ℓ are i.i.d. standard complex Gaussians.

This result suggests a candidate for the limiting characteristic polynomial of the Circular
β-Ensemble:

exp

√ 2
β

∑
k⩾1

zk√
k
Xk

 (2.2.1)

where (Xk)k⩾1 are i.i.d. standard complex Gaussians. The function

f(z) =
∑
k⩾1

zk√
k
Xk (2.2.2)

is a particular example of a Gaussian analytic function which are ubiquitous for limits of
characteristic polynomials. We provide a general definition that can be found in [Hou+09].
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Definition 2.2.2 (Gaussian Analytic Function, [Hou+09]). Let Λ ⊂ C be a region in
the complex plane. Let f be random variable with values in H(Λ), the space of analytic
functions on Λ. Then, f is said to be Gaussian Analytic Function if for all n ⩾ 1 and
points (z1, . . . , zn) ∈ Λn, the vector

(f(z1), . . . , f(zn))

is a centered complex Gaussian vector in Cn.

Inside the unit disk

The expression (2.2.2) is well defined on the unit disk D. Najnudel, Paquette and Simm
[NPS23] established the convergence of the characteristic polynomial to the function
(2.2.1).

Theorem 2.2.3 (Convergence of CβE characteristic polynomial, [NPS23]). For β > 0,
one can construct a probability space such that for any r ∈ (0, 1), one has almost surely as
n → ∞,

sup
|z|<r

∣∣∣∣∣∣pn(z) − e
√

2
β

∑
k⩾1

zk√
k
Xk

∣∣∣∣∣∣ → 0.

where (Xk)k⩾1 are i.i.d. standard complex Gaussians.

The limiting function
F (z) = ef(z)

where f is a Gaussian analytic function is referred as the holomorphic multiplicative chaos
as introduced in [NPS23]. See also [Naj+25] for further results on its Fourier coefficients.
It is an example of log-correlated field, in the sense that for z, w ∈ D, the covariance
structure of f is given by

E[f(z)f(w)] = 0 and E[f(z)f(w)] = − log(1 − zw).

The convergence of Theorem 2.2.3 holds uniformly on compact subsets of the unit disk D.
This corresponds to a region which does not contain any eigenvalues, which are all located
on the unit circle. In contrast, the study of the characteristic polynomial in the critical
region, that is, on the unit circle, yields other types of limiting behaviors which we explore
in the next paragraph.

On the unit circle

A Gaussian limit for the log-characteristic polynomial of Haar unitary matrices evaluated
on the unit circle was first identified in [HKO01]. The scaling is different from the one of
2.2.3 due to the presence of eigenvalues. This difference had already been observed in the
earlier work of Keating and Snaith [KS00], where the authors proved the convergence in
distribution

log pn(1)√
1
2 log(n)

→ NC(0, 1).

This suggested the right scaling later used in [HKO01].

Chhaibi, Najnudel and Nikeghbali [CNN17] considered ratios of characteristic polyno-
mial of Haar random matrices in the so-called microscopic regime, near the point 1 ∈ S1

corresponding to the scaling z/n.
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Theorem 2.2.4 (Convergence of ratios [CNN17]). Let An be a Haar distributed unitary
matrix and let us define

ξn(z) :=
det

(
In − e

2iπz
n A∗

n

)
det (In −A∗

n) .

Then, as n → ∞, we have the convergence in law, for the topology of local uniform
convergence in C,

ξn → ξ∞,

where
ξ∞(z) := eiπz

∏
k∈Z

(
1 − z

yk

)
and where (yk)k∈Z are sampled from the determinantal point process called the Sine process
having kernel on R2

K(x, y) = sin(π(x− y))
π(x− y) .

The same function ξ∞ was identified to be the limit for ratios of characteristic polyno-
mials beyond the Haar unitary case in the work [Chh+19]. It is the limit for ratios of
characteristic polynomial for matrices sampled from the Haar measure on the special or-
thogonal group SO(n) and the symplectic group Sp(n). The same work also establishes
that the limit of ratios of characteristic polynomials of GUE matrices with a different
scaling involves the same entire function.

2.2.2 Permutation matrices

In this section, we consider the special case of permutation matrices. Let An = A(σn) be
a permutation matrix associated to a permutation σn ∈ Sn. By decomposing the permu-
tation σ in disjoint cycles, the characteristic polynomial of its permutation matrix can be
expressed accordingly. If σn has cycle decomposition (C(n)

1 , . . . , C
(n)
n ), its characteristic

polynomial is given by

pn(z) = det(In − zAn) =
n∏
k=1

(
1 − zk

)C(n)
k
. (2.2.3)

As for circular ensembles, there are two main regimes for analyzing the characteristic
polynomial depending on the location of the complex variable z. The first approach
examines the characteristic polynomial on the unit circle, where eigenvalues are located.
The second deals with z inside the unit disk D where it does not vanish and where it is
shown to converge to a random analytic function analogous to the result in Theorem 2.2.3.

On the unit circle

In the same vein as for Haar unitary matrices, the log-characteristic polynomial of uniform
permutation matrices was shown to converge to a Gaussian limit by Hambly, Keevash,
O’Connell and Stark [Ham+00]. This convergence holds at points e2iπα on the unit circle
where the angle α ∈ (0, 1) is irrational and of finite type. We refer to [Ham+00] for the
precise definition and only state their main result which exhibits a

√
log(n) scaling, similar

to the case of Haar random matrices.
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Theorem 2.2.5 (Characteristic polynomial of uniform permutation matrices, [Ham+00]).
Let An = An(σ) be a random permutation matrix where σ is uniformly distributed on Sn.
Let α ∈ (0, 1) be an irrational number of finite type. Then, as n → ∞, the real and
imaginary parts of

log pn(e2iπα)√
π2

12 log(n)

converge to standard real Gaussian random variables.

Zeindler [Zei13] further showed that the two limiting Gaussians in Theorem 2.2.5 are in-
dependent so that the limit of the log-characteristic polynomial is a standard complex
Gaussian. Zeindler’s results are more general as they remain valid for the Ewens distri-
bution (1.1.12) with any parameter θ > 0. Together with Dang [DZ14], these results were
extended to describe the joint convergence of the log-characteristic polynomial for Ewens
random matrices at several irrational points on the unit circle.

Theorem 2.2.6 (Convergence of log-characteristic polynomial for Ewens permutations,
[DZ14]). Let k ⩾ 1 and let

(
e2iπα1 , . . . , e2iπαk

)
be points on S1 with irrational angles

(αi)1⩽i⩽k pairwise of finite type, see [DZ14]. Let An be a random permutation matrix
following the Ewens distribution with parameter θ > 0. Then, we have the convergence in
law

1√
π2

12 θ log(n)

log pn(e2iπα1)
...

log pn(e2iπαk)

 →
n→∞

Z1
...
Zk

 ,
where Z1, . . . , Zk are independent complex Gaussians, each with independent, centered real
and imaginary parts of unit variance.

A natural question is whether this result can be extended to general circular ensembles as
defined in (1.1.11).

Inside the unit disk

Similar to the results of [NPS23] for the characteristic polynomial of circular ensembles,
Coste, Lambert and Zhu [CLZ24] studied the characteristic polynomial of permutation
matrices under the uniform distribution inside the unit disk. Since permutation matrices
have no eigenvalues in this region, one can expect a convergence towards a random analytic
function.

Theorem 2.2.7 (Convergence of the characteristic polynomial of uniform permutations,
[CLZ24]). Let d ⩾ 1 be a fixed integer and let An be a sum of d i.i.d. uniform permutation
matrices. Let (Λℓ)ℓ⩾1 be independent Poisson random variables with respective parameters
(dℓℓ )ℓ⩾1. Then,

1√
d
pn

(
z√
d

)
converges in law, for the topology of local uniform convergence in D to(

z − 1√
d

) e−Yd(z)

E[e−Yd(z)]

where
Yd(z) =

∑
k⩾1

zk

kdk/2

∑
ℓ|k

ℓ(Λℓ − E[Λℓ]).
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Theorem 2.2.7 can be seen as an analog of Theorem 2.2.3. In both cases, the character-
istic polynomial converges to the exponential of a random series, whose coefficients are
Gaussian for circular ensembles and Poisson for permutation matrices.

The appearance of Poisson variables in the limit for permutation matrices arises from
known results on the convergence of the cycle process. Indeed, for |z| < 1, the log-
characteristic polynomial log pn can be written as a sum over random cycle counts

log pn(z) =
n∑
k=1

C
(n)
k log(1 − zk).

The joint distribution of cycles counts
(
C

(n)
k

)
1⩽k⩽n

for uniform permutation matrices is
known to converge to Poisson random variables, as shown in [SL66]. This result was
extended in [CLZ24] to sums of a fixed number of independent, uniform permutation
matrices. For a permutation matrix An with cycle decomposition

(
C

(n)
k

)
1⩽k⩽n

, there is
also an explicit relation between the trace of powers and cycle counts:

Tr
[
Akn

]
=
∑
ℓ|k

ℓC
(n)
ℓ .

Together with the finite dimensional convergence of
(
C

(n)
ℓ

)
ℓ⩾1

to Poisson random variables,
one expects the limiting function for the characteristic polynomial of random uniform per-
mutation matrices to be given by the exponential of a Poisson series which is precisely the
result of Theorem 2.2.7.

In their work [CLZ24], the authors raise the question of whether their result can be
extended to more general measures on permutations, particularly the Ewens distribution
(1.1.12). In Chapter 5, we address this question by establishing the convergence of the
characteristic polynomial for a measure that generalizes the Ewens distribution, namely,
the generalized Ewens distribution, introduced by Nikeghbali and Zeindler in [NZ13].

2.3 Study of outliers
We present here a series of results on the convergence of characteristic polynomials, orig-
inally motivated by the study of outliers. It was noticed by Basak and Zeitouni [BZ20]
that perturbations of Toeplitz matrices, which are non-normal random matrices, have
some eigenvalues that deviate from the global behavior dictated by the convergence of the
empirical eigenvalue distribution.
Motivated by techniques used for Toeplitz matrices, Bordenave, Chafaï and García [BCG22]
proved the convergence of the characteristic polynomial of Girko matrices under a univer-
sal second order moment condition. Their result led to the convergence of the spectral
radius for such matrices as stated in Theorem 1.4.4.
This approach has since been applied to other matrix models. For i.i.d. but non-centered
entries with Bernoulli distribution, Coste [Cos23] established the convergence of the char-
acteristic polynomial to a limiting random function. The same kind of convergence was
obtained by Coste, Lambert and Zhu [CLZ24] for sums of random uniform permutation
matrices and for Circular β-Ensembles by Najnudel, Paquette, Simm [NPS23], as pre-
sented in Theorem 2.2.7 and Theorem 2.2.3 respectively.
The results presented in this section concern various matrix models, namely Toeplitz,
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Girko and Bernoulli which are related by the convergence of their characteristic polyno-
mial toward limiting functions involving either Gaussian analytic functions or, in the case
of permutation models, Poisson series.

2.3.1 Toeplitz matrices

We begin with the seminal work of Basak and Zeitouni [BZ20], from which this section
borrows from, on outliers of randomly perturbed Toeplitz matrices which inspired the
developments presented in Sections 2.3.2 and 2.3.3.

Let d1, d2 be positive integers and let (ak)−d2⩽k⩽d1 be the coefficients of a Laurent poly-
nomial

a(z) =
d1∑

k=−d2

akz
k.

Definition 2.3.1 (Toeplitz matrix). For n ⩾ max(d1, d2), the n× n Toeplitz matrix with
symbol a is defined as

Tn(a) :=



a0 a1 a2 · · · 0

a−1 a0 a1
. . . ...

a−2 a−1 a0
. . . a2

... . . . . . . . . . a1
0 · · · a−2 a−1 a0


.

For convenience we write Tn for Tn(a). The matrix Tn can be seen as a finite-dimensional
approximation of the Toeplitz operator T = T (a) : CN → CN defined by

T (x) :=

 d1∑
k=−d2

akxk+n.


n⩾0

, x = (xn)n⩾0.

Let Spec(T ) denote the spectrum of the operator T . It is known that the empirical
eigenvalue distribution of Tn converges weakly in probability to the law of a(U), where U
is a random variable uniformly distributed on S1.
The results of [BZ20] concern random perturbation of Tn. Under suitable conditions on
the perturbation ∆n, no eigenvalue of An = Tn + ∆n lies outside of a small neighborhood
of the limiting support a(S1), a property known as the spectral stability.

Theorem 2.3.2 (Spectral stability for T (a), [BZ20]). Let ∆n = n−γEn for some γ > 1
2 ,

where En ∈ Mn(C) is a Girko matrix with centered entries of unit variance. Let µn be
the empirical eigenvalue distribution of An = Tn + ∆n. Then, for every ϵ > 0,

lim
n→∞

P [µn ({z ∈ C | dist(z,Spec(T (a))) > ϵ}) = 0] = 1.

In addition, the convergence of the eigenvalue point process outside Spec(T (a)) was also
established. Let S0 = C \ Spec(T (a)) be the region outside the limiting support for the
eigenvalues. Let Specn = {z ∈ C | det(zIn−An) = 0} be the spectrum of An = Tn(a)+∆n

and consider the point process
Ξn =

∑
z∈S0∩Specn

δz.
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It was shown in [BZ20, Theorem 1.11], that under further assumptions on the perturbation
matrix ∆n, the point process Ξn converges weakly to a limiting point process described
as the zeros of a random field (F (z))z∈S0 . Explicit expressions for this limiting field are
known for particular instances of the symbol a. In the case where a(z) = z and where En
is a Ginibre matrix, the limit is given by the hyperbolic Gaussian analytic function:

F (z) =
∑
k⩾0

zkXk

√
k + 1 (2.3.1)

where (Xk)k⩾0 are i.i.d. standard complex Gaussians. The function appearing in (2.3.1)
is another example of a Gaussian analytic function as in Definition 2.2.2.

2.3.2 Girko matrices

We now turn to results on the characteristic polynomials of i.i.d. matrices based on the
work [BCG22]. In particular, this will give a proof of the previously stated convergence
of the spectral radius of Girko matrices in Theorem 1.4.4. In this section, An denotes a
Girko matrix with entries satisfying

E[aij ] = 0 and E[|aij |2] = 1.

The main result of [BCG22] is the convergence in law, for the topology of local uniform
convergence, of the scaled characteristic polynomial

pn(z) := det
(
In − z

An√
n

)
inside the unit disk D = {z ∈ C : |z| < 1}.

Theorem 2.3.3 (Convergence of characteristic polynomial for Girko matrices, [BCG22]).
We have the convergence in law

pn →
n→∞

κe−F

where

κ(z) =
√

1 − z2E[a2
11], F (z) =

∑
k⩾1

Xk
zk√
k

with (Xk)k⩾1 a family of independent, complex Gaussians such that

E[Xk] = 0, E[|Xk|2] = 1 and E[X2
k ] = E[a2

11]k.

Theorem 2.3.3 implies the convergence of the spectral radius ρn of 1√
n
An. Indeed, from

the continuous mapping theorem, for every r ∈ (0, 1),

P
[
ρn <

1
r

]
= P

[
inf

|z|⩽r
|pn(z)| > 0

]
−−−→
n→∞

P
[

inf
|z|⩽r

|κ(z)e−F (z)| > 0
]

= 1.

The expression of the limit as the exponential of a Gaussian analytic function connects
with the case of unitary matrices as the same expression of the exponential of a Gaussian
analytic function appears for the limiting random function. The convergence of the char-
acteristic polynomial for Girko matrices with variance profile can be found in [HL25]. In
this case, the limiting Gaussian analytic function depends on the variance profile.
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2.3.3 Bernoulli matrices

We now present a result by Coste [Cos23] concerning the convergence of the characteristic
polynomial for matrices with i.i.d. Bernoulli entries. The main difference compared to the
results of [BCG22] is that Bernoulli random variables are non-centered.
In this section, An = (aij)1⩽i,j⩽n is a n×n matrix with entries aij following the Bernoulli
distribution of parameter dn

n , denoted by aij ∼ B(dnn ) for some sequence (dn)n⩾1 of posi-
tive numbers. This corresponds to the adjacency matrix of a directed Erdös-Rényi graph
with average in and out degrees equal to dn, which explains the scaling dn

n .

The empirical eigenvalue distribution of An has been studied by Rudelson, Tikhomirov
[RT19] and Basak [BR19]. The limiting distribution depends on the asymptotic behavior
of the sequence (dn)n⩾1. In particular,

• if dn → ∞, the empirical eigenvalue distribution converges almost surely to the
circular law as in Theorem 1.3.12.

• If dn = d, called the sparse regime, no closed expression of the limit eigenvalue
distribution is known. However, results on eigenvalue localization are established in
[BCN23].

In the sparse regime, Coste [Cos23] established the convergence of the characteristic poly-
nomial, thereby providing a new proof of the localization results in [BCN23]. We state
this convergence result below. For r ∈ (0, 1), we denote by Dr = {z ∈ C : |z| < r} the
open disk of radius r.
Theorem 2.3.4 (Convergence of characteristic polynomial of sparse Bernoulli matrices,
[Cos23]). Let d > 0 and let An be a matrix having i.i.d. Bernoulli entries with parameter
d
n . Then, as n → ∞, we have the convergence in law, for the topology of local uniform
convergence in H(D1/

√
d),

pn −→ F

where, for z close enough to the origin,

F (z) =
∏
k⩾1

(
1 − zk

)Yk
,

with (Yk)k⩾1 being independent Poisson random variables with parameters (dkk )k⩾1.
More refined expressions of the limiting function F depending on the value of d can be
found in [Cos23, Theorem 2.7], cases (i) − (iii).

The limit expression is reminiscent of the one obtained for the characteristic polynomial
of permutation matrices in Theorem 2.2.7. In both cases, the limit can be written as the
exponential of a random series with Poisson distributed coefficients. In analogy with the
holomorphic multiplicative chaos introduced in [NPS23], Coste referred to the limiting
function of Theorem 2.3.4 as the Poisson multiplicative chaos. Poisson series also appear
as limits of the characteristic polynomial of Ewens permutation matrices, see chapter 5.

2.4 Contributions to the subject
We state our contributions on the convergence of characteristic polynomials for two in-
tegrable models presented in Sections 2.4.1 and Sections 2.4.2 and corresponding to the
articles [FG23] and [Fra25] which are the subjects of Chapters 4 and 5 respectively.
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2.4.1 Characteristic polynomial of Gaussian elliptic matrices

The random matrices that we consider in this section are sampled from the complex el-
liptic Ginibre Ensemble introduced by Girko in [Gir86]. This model is parametrized by
t ∈ [0, 1] and interpolates between the Ginibre Ensemble of Definition 1.1.5 and the Gaus-
sian Unitary Ensemble of Definition 1.1.8 for t = 0 and t = 1 respectively. Its law is the
one of a random matrix given by the following construction.

Consider Xn and Yn independent random matrices sampled from the Gaussian Unitary
Ensemble of size n ⩾ 1. The law of the elliptic Ginibre Ensemble at t ∈ [0, 1] is the law of
the matrix

An,t =
√

1 + t

2 Xn + i

√
1 − t

2 Yn, (2.4.1)

where i is the imaginary unit. Equivalently, An,t has a law proportional to

exp
(

− 1
1 − t2

Tr
[
M∗M − t

2
(
M2 + (M∗)2

)])
dM, (2.4.2)

where dM =
∏

1⩽i,j⩽n dMij is the product Lebesgue measure on the entries of the matrix.
The limiting eigenvalue distribution has been proved by Girko [Gir86] to be the uniform
law on the ellipse

Et :=
{
x+ iy ∈ C |

(
x

1 + t

)2
+
(

y

1 − t

)2
⩽ 1

}
.

Let us define fn,t : D → C as the normalised characteristic polynomial of An,t,

fn,t(z) := det
(

1 + tz2 − z√
n
An,t

)
e−ntz2

2 . (2.4.3)

We endow the space of holomorphic functions on D with the topology of uniform conver-
gence on compact sets. Our main result is the following convergence.

Theorem 2.4.1 (Convergence of the normalised characteristic polynomial). We have the
convergence in law, for the topology of local uniform convergence,

fn,t
law−−→
n→∞

exp(−Ft)

where Ft is the Gaussian holomorphic function on D defined by

Ft(z) :=
∑
k⩾1

Xk
zk√
k

(2.4.4)

for a family (Xk)k⩾1 of independent Gaussian random variables on C satisfying

E[Xk] = 0, E[X2
k ] = tk and E[|Xk|2] = 1.

In particular, for t = 1, Theorem 2.4.1 shows that the characteristic polynomial of GUE
matrices, suitably normalized, converges to a random holomorphic function. From Theo-
rem 2.4.1, we derive the absence of outliers which is the elliptic analog of the convergence
of the spectral radius of Girko matrices, see Theorem 1.4.4.

Corollary 2.4.2 (Lack of outliers). Let C ⊂ C be a closed set disjoint from Et. Then,

Nn(C) := #
{
i ∈ [n] : λi√

n
∈ C

}
P−→

n→∞
0. (2.4.5)
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We expect an analogue of Theorem 2.4.1 to hold in a much more general setting as conjec-
tured in [BCG22], see Section 2.5.1. The limit would only depend on some of the first four
moments of the coefficients of the random matrix. A glimpse of this universality can be
seen, for instance, when calculating the expected value of the characteristic polynomial.
This depends only on t = E[a12a21] and we have the following convergence for the average
characteristic polynomial of elliptic matrices.

Theorem 2.4.3 (Average characteristic polynomial). For each n, let An,t = (aij , 1 ⩽
i, j ⩽ n) be a random matrix such that {(aij , aji), 1 ⩽ i < j ⩽ n} are i.i.d. centered pairs
which are independent of the i.i.d. centered family {aii, 1 ⩽ i ⩽ n} with E[|aij |2] < ∞ for
all 1 ⩽ i, j ⩽ n and E[a12a21] = t ∈ [0, 1]. Then, for z uniformly in D,

lim
n→+∞

E
[

det
(

1 + tz2 − z√
n
An,t

)
e−ntz2

2

]
= 1√

1 − tz2
. (2.4.6)

2.4.2 Characteristic polynomial of generalized Ewens random matrices

In this section, we consider permutation matrices sampled from the generalized Ewens
distribution, introduced by Nikeghbali and Zeindler [NZ13], which generalizes the Ewens
distribution (1.1.12). Recall that for a permutation σ ∈ Sn and k ⩾ 1, Ck(σ) is the number
of cycles of σ with length k.

Definition 2.4.4 (Generalized Ewens measure, [NZ13]). Let Θ = (θk)k⩾1 be a sequence
of positive real numbers. For n ⩾ 1, the generalized Ewens measure is the probability
measure dPΘ

n on Sn defined by

dPΘ
n [σ] := 1

n!hΘ
n

n∏
k=1

θ
Ck(σ)
k . (2.4.7)

From the sequence Θ = (θk)k⩾1, one defines the formal power series as in [NZ13],

gΘ(z) :=
∑
k⩾1

θk
k
zk and GΘ(z) := exp(gΘ(z)) (2.4.8)

For n ⩾ 1 and Θ = (θk)k⩾1 as above, we consider An the random matrix associated to a
permutation σ sampled from (2.4.7). Let us consider the characteristic polynomial

pn(z) = det(1 − zAn) (2.4.9)

inside the unit disk z ∈ D = {x ∈ C : |x| < 1}. Let us denote by H(D) the space
of holomorphic functions on D endowed with the topology of convergence on compact
subsets of D. Our main result is the convergence of pn as a random variable in H(D) in
law towards a limit function F ∈ H(D). The above convergence holds for parameters Θ
such that the generating series gΘ satisfies some conditions that we now define which is
an adaptation of a definition given in Section 5.2.1 of [Hwa94]. One can also find it as
Definition 2.9 in [Hug+13] or Definition 2.8 in [NZ13].

Definition 2.4.5 (Logarithmic class function). A function g is said to be in F (r, γ,K)
for r > 0, γ ⩾ 0 and K ∈ C if

• There exists R > r and ϕ ∈ (0, π/2) such that g is holomorphic in ∆(r,R, ϕ) \ {r}
where ∆(r,R, ϕ) = {z ∈ C : |z| ⩽ R, | arg(z − r)| ⩾ ϕ}.

• As z → r, g(z) = −γ log(1 − z/r) +K +O(z − r).
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In the case of the Ewens measure of parameter θ, we have gΘ(z) = −θ log(1 − z) so that
gΘ ∈ F (1, θ, 0). Note that if γ > 0, the parameter r is unique.

Our main result is Theorem 2.4.6 which gives the convergence of the characteristic poly-
nomial towards a limit function for sequences Θ such that g is of logarithmic class.

Theorem 2.4.6 (Convergence of the characteristic polynomial). Let Θ = (θk)k⩾1 be a
sequence of positive real numbers such that gΘ ∈ F (r, γ,K) for r > 0 and γ > 0. We have
the convergence in law, for the topology of local uniform convergence in D

pn
law−−→
n→∞

F, (2.4.10)

where

F (z) = exp

−
∑
k⩾1

zk

k
Xk

 , Xk =
∑
ℓ|k

ℓYℓ, (2.4.11)

with (Yℓ)ℓ⩾1 independent Poisson random variables with parameter θℓ
ℓ r

ℓ.

The previous theorem gives in particular the convergence of the characteristic polynomial
for Ewens permutation matrices. Indeed, for constant θ, the function gΘ ∈ F (1, θ, 0) so
that pn converges towards the limit function as conjectured in [CLZ24].
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2.4.3 Summary of presented limits for characteristic polynomials

Matrix model Scaling Limit function

CβE
[NPS23]

det(In − zAn)

z ∈ D

Holomorphic Multiplicative Chaos

exp

√ 2
β

∑
k⩾1

zk

√
k
Xk


Xk ∼ NC(0, 1).

Haar unitary
[CNN17] ξn(z) =

det
(

In−e
2iπz

n A∗
n

)
det(In−A∗

n)

z ∈ C

ξ∞(z) = eiπz
∏
k∈Z

(
1 − z

yk

)
(yk) ∼ Sine process.

Sum of d
uniform permutations

[CLZ24]

1√
d
pn

(
z√
d

)
z ∈ D

Poisson Multiplicative Function(
z − 1√

d

)
e−Yd(z)

E[e−Yd(z)]

Yd(z) =
∑
k⩾1

zk

kdk/2

∑
ℓ|k

ℓ(Λℓ − E[Λℓ])

(Λℓ) ∼ P
(

dℓ

ℓ

)
.

Ewens permutations
[Fra25]

Θ = (θℓ)ℓ⩾1

gΘ ∈ F(r, γ,K)

det(In − zAn)

z ∈ D

Poisson Multiplicative Function

exp

−
∑
k⩾1

zk

k Xk


Xk =

∑
ℓ|k

ℓYℓ, Yℓ ∼ P
(

rℓθℓ

ℓ

)
.

Girko
[BCG22]

E[aij ] = 0
E[|aij |2] = 1

det
(
In − z An√

n

)
z ∈ D

Gaussian Multiplicative Chaos√
1 − z2E[a2

11] exp

−
∑
k⩾1

zk

√
k
Xk


(Xk)k⩾1 independent, complex Gaussians

E[Xk] = 0, E[|Xk|2] = 1,E[X2
k ] = E[a2

11]k.

Elliptic Ginibre
[FG23]

t ∈ [0,1]

det
(

1 + tz2 − z√
n An,t

)
e− ntz2

2

z ∈ D

Gaussian Multiplicative Chaos

exp

−
∑
k⩾1

zk
√

k
Xk


(Xk)k⩾1 independent, complex Gaussians

E[Xk] = 0, E[X2
k] = tk, E[|Xk|2] = 1.

Girko Bernoulli
[Cos23]

aij ∼ B( d
n )

det (In − zAn)

z ∈ D

Poisson Multiplicative Function∏
k⩾1

(
1 − zk

)Yk

Yk ∼ P
(

dk

k

)
.
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2.5 Open questions

2.5.1 Minimal moment condition and universality

As conjectured in [BCG22], the convergence in Theorem 2.4.1 of the normalised charac-
teristic polynomial is believed to hold under the minimal moment condition

E
[
|a12a21|2

]
< ∞

on the entries (aij)i,j⩾1, which gives a condition of a fourth order moment for Wigner
matrices and second order moment for Girko matrices. The context adapted to this
conjecture is the one of elliptic random matrices [NO15, Definition 1.3]. This model was
introduced by Girko in [Gir86] and [Gir95]. A version of this model consists of the following
matrices. Consider a family (aij)i,j⩾1 of square-integrable centered random variables such
that {(aij , aji) : i < j} ∪ {aii : i ⩾ 1} is an independent family of random elements and
whose law is invariant under any permutation of the indices or, equivalently, the law of
(aij , aji) coincides with the law of (ai′j′ , aj′i′) whenever |{i, j}| = |{i′, j′}|. If

E[|a12|2] = 1 and E[a12a21] = t,

the matrix An = (aij)1⩽i,j⩽n is said to be t-Girko. The convergence of the average eigen-
value distribution towards the uniform distribution on the ellipse has been proved under
different conditions on the variables, see [NO15; OR14; Nau13]. We expect the following
version of Theorem 2.4.1 to hold for the general t-Girko matrices described above. De-
noting τ = E[a2

12], s = E[a2
11] − t − τ and q = E[(a12a21 − t)2] − t2 − τ2, the limit of

det
(
1 + tz2 − z

An,t√
n

)
exp(−ntz2/2) is expected to be given by

√
1 − τz2e−sz2/2e−qz4/4e−

∑
k⩾1 Yk

zk√
k

where (Yk)k⩾1 are independent centered complex Gaussians such that Y1 has the same
variance as a11, Y2 has the same variance as a12a21 and, for k ⩾ 3, the variance of Yk
is the sum of the k-th power of the variance of a12 and the k-th power of the covariance
of a12 and a21 or, somewhat more explicitly, E[Y 2

k ] = E[a2
12]k + E[a12a21]k = τk + tk and

E[|Yk|2] = E[|a12|2]k + E[a12a21]k = 1 + E[a12a21]k.

2.5.2 Matrices with entries in {0, 1}

As presented in Section 2.3.3, a convergence of the reciprocal characteristic polynomial for
matrices with independent Bernoulli entries with non-zero expectation has been proved
in [Cos23]. The limiting random holomorphic function can be expressed using Poisson
random variables, see Theorem 2.3.4. One could ask for an analogue of the elliptic Ginibre
Ensemble for such matrices and for the convergence of its characteristic polynomial.

2.5.3 Determinantal Coulomb gases

The convergence of Theorem 2.4.1 can be thought of as a first step towards the convergence
of the characteristic polynomial outside the support of the equilibrium measure for general
elliptic random matrices. Nevertheless, we could have followed a different path, which is to
look the Elliptic Ginibre Ensembles as a particular case of a determinantal Coulomb gas.
In this vein, it may be possible to show the convergence of the traces by adapting results
from [AHM15] and to show tightness of the characteristic polynomial outside the support
of the equilibrium measure for more general determinantal Coulomb gases by using, for
instance, the results from [AC23].



2.5. OPEN QUESTIONS 49

2.5.4 Characteristic polynomial in the bulk

Theorem 2.4.6 shows the convergence of the characteristic polynomial outside of the sup-
port of the limiting eigenvalue distribution. One could ask for a similar study inside the
region where the eigenvalues are, that is, for the limiting distribution of log pn(z) for z
inside the asymptotic support. Expanding the logarithm gives

log pn(z) =
n∑
k=1

log(1 − zλk,n) = n

∫
log(1 − zu)µn(du)

so that the asymptotic analysis can be viewed as a central limit theorem for the log
statistic. Limits for fluctuations of log |pn(z)| for Ginibre matrices inside the unit disk
have been established to be Gaussian [RV07], and the limiting field inside the bulk is
the Gaussian free field. As suggested by the results of Webb and Wong [WW19], the
scaling would be different compared to the outside region. Central limit theorems for
linear statistics were proven by Rider and Silverstein for general complex Girko matrices
[RS06] and by [CES21] for the case of real entries, with regularity assumptions on test
functions. In another universal direction, fluctuations results were established for linear
statistics of Coulomb gases [LS18; Bau+19] where the limiting field is the Gaussian free
field.

2.5.5 Fluctuations of real parts

One could also study the fluctuations of real parts of eigenvalues of matrices from the
elliptic Ginibre Ensemble. In the case of the GUE, it is known by the work of Gustavsson
[Gus05] that the k-th eigenvalue has asymptotic Gaussian fluctuations around its expected
location in the semi-circle, both in the bulk when k

n → a ∈ (0, 1) and in the edge when
k → ∞ and k

n → 0. The proof relies on a result of Costin, Lebowitz [CL95] and Soshnikov
[Sos00b] giving Gaussian fluctuations for the number of points of a determinantal point
process which lie in some interval. Since eigenvalues of the elliptic Ginibre Ensemble
form a determinantal point process and results of [ADM23] provide asymptotics for the
associated kernel, one could aim at deriving Gaussian fluctuations for their real parts by
using these techniques.
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Chapter 3

Horn problems

This chapter provides an overview of research initiated by Horn [Hor62] which arose from
a question of Weyl [Wey12] on the spectrum of a sum of Hermitian matrices in 1912. This
initial problem is known as the additive or Hermitian Horn Problem. Since its original
formulation, determining exact conditions that characterize the spectrum of a sum of Her-
mitian matrices led to many developments using techniques from representation theory
[Kly98], algebraic and symplectic geometry [Knu00], combinatorics [KT01] and probability
theory [CMZ19]. The complete solution to the original problem was only given in the late
1990s, notably through the contributions of Klyachko [Kly98], Totaro [Tot94], Knutson
and Tao [KT99]. Section 3.1 presents the main developments starting from the work of
Horn.

From the initial additive problem, new versions were studied for eigenvalues of opera-
tions on subgroups of matrices. One particular case is to characterise the eigenvalues
of products of unitary matrices, also known as the unitary, or multiplicative Horn prob-
lem. This unitary version is the subject of Section 3.2. As with the additive problem,
the multiplicative version turns out to be related to notions coming from representation
theory, geometry and mathematical physics. In Section 3.3, we present our results on a
probabilistic version of the unitary Horn problem, corresponding to the articles [FT24]
and [Fra24] respectively presented in Chapters 6 and 7 of this thesis.

3.1 Sum of Hermitian matrices
This section is devoted to the additive version of the Horn problem. It is inspired by the
surveys of Fulton [Ful00] and of Knutson and Tao [KT01]. We begin in Section 3.1.1 by
giving the historical perspective that led to a system of inequalities which eigenvalues of
a sum must satisfy and which turn out be to sufficient. Section 3.1.2 reinterprets these
inequalities from a geometric point of view and introduces the Littlewood-Richardson
coefficients which are central in the additive Horn problem. Section 3.1.3 presents combi-
natorial results on Littlewood-Richardson coefficients based on the work of Knutson and
Tao. Beyond the original deterministic problem, one can consider a probabilistic version:
given two random Hermitian matrices what is the density of eigenvalues of their sum. This
probabilistic framework is presented in Section 3.1.4.

3.1.1 System of inequalities for eigenvalues

Let n ⩾ 1 be a fixed integer. In 1912, Weyl [Wey12] asked the following question.

51
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Given two Hermitian matrices, what eigenvalues can arise for their sum ?

Let us consider Hermitian matrices A and B with fixed respective eigenvalues

α = (α1 ⩾ · · · ⩾ αn) and β = (β1 ⩾ · · · ⩾ βn) .

This is equivalent to saying that A and B are in the respective orbits OH(α) and OH(β)
where for θ ∈ Rn/Sn,

OH(θ) := {U Diag(θ1, . . . , θn)U∗, U ∈ U(n)}.

Let C = A+B be their sum, which is also a Hermitian matrix and denote its eigenvalues
by

γ = (γ1 ⩾ · · · ⩾ γn).

The question can be formulated as

What is the relation between γ and α, β ?

A first equality relating α, β and γ is obtained by taking the trace which gives

n∑
k=1

αk +
n∑
k=1

βk =
n∑
k=1

γk . (3.1.1)

Thus, the eigenvalues γ are located in a hyperplane of Rn. Recall that for a Hermitian
matrix A ∈ Mn,

α1 = max
x:||x||=1

⟨x,Ax⟩

where ⟨x, y⟩ denotes the Hermitian scalar product. Thus

γ1 ⩽ α1 + β1.

This inequality can be generalized using min-max formulas for eigenvalues of Hermitian
matrices. For 1 ⩽ k ⩽ n, let us denote by

Gr(k, n) := {V ∈ Cn | dim(V ) = k}

the set of k-dimensional subspaces of Cn, called the Grassmannian of k-dimensional sub-
spaces. Any eigenvalue can then be expressed via a min–max formula thanks to the results
of Courant [Cou20] and Fischer [Fis05].

Lemma 3.1.1 (Minmax formulation, [Cou20; Fis05]). Let A be a Hermitian matrix of
size n ⩾ 1. For any 1 ⩽ k ⩽ n,

αk = max
V ∈Gr(k,n)

min
x∈V

||x||=1

⟨x,Ax⟩ = min
V ∈Gr(n+1−k,n)

max
x∈V

||x||=1

⟨x,Ax⟩. (3.1.2)

For 1 ⩽ r ⩽ n, let us denote by

Pr
n := {I = (i1, . . . , ir) | 1 ⩽ i1 < i2 · · · < ir ⩽ n}

the set of ordered r-tuples distinct elements of [n]. From Lemma 3.1.1, one can obtain the
following result.
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Lemma 3.1.2 (Eigenspace). Let x1, . . . , xn be an orthonormal basis of eigenvectors of A
associated to its eigenvalues α1, . . . , αn. Let r ∈ [n] and let I = (i1, . . . , ir) ∈ Pr

n. Let
V = Vect(xi1 , . . . , xir) be the subspace generated by eigenvectors indexed by I. Then,

αi1 = max
x∈V

||x||=1

⟨x,Ax⟩, αir = min
x∈V

||x||=1

⟨x,Ax⟩.

Using Lemma 3.1.2, one derives the Weyl inequalities that can be found in [Wey12].

Lemma 3.1.3 (Weyl inequalities, [Wey12]). For 1 ⩽ i, j ⩽ n such that i+ j − 1 ⩽ n,

γi+j−1 ⩽ αi + βj . (3.1.3)

For n = 2, the inequalities (3.1.3) together with the trace condition (3.1.1) are both
necessary and sufficient for the existence of three Hermitian matrices with eigenvalues
α, β, γ related by C = A+B.
More inequalities are needed to fully characterise the eigenvalues of the sum. The general
form of these inequalities is given by∑

k∈K
γk ⩽

∑
i∈I

αi +
∑
j∈J

βj , (IJK)

and is parametrized by triples (I, J,K) ∈ (Pr
n)3 for r < n. For r < n, define

U rn :=

(I, J,K) ∈ (Pr
n)3 |

∑
i∈I

i+
∑
j∈J

j =
∑
k∈K

k + r(r − 1)
2


and define recursively the sets T rn for r < n by setting T 1

n := U1
n and for r > 1,

T rn :=

(I, J,K) ∈ U rn | ∀p < r, (F,G,H) ∈ T pr :
∑
f∈F

if +
∑
g∈G

jg ⩽
∑
h∈H

kh + p(p− 1)
2

 .
Horn [Hor62] conjectured that inequalities (IJK) for (I, J,K) ∈ T rn are both necessary and
sufficient, which was later proved to be true, see [Kly98; KT01].

Theorem 3.1.4 (Horn problem 1, [Kly98; KT01]). There exists three Hermitian matrices
(A,B,C) such that A + B = C with respective eigenvalues α, β and γ such that (3.1.1)
holds if and only if, for every r < n, the inequality (IJK) holds for every triple (I, J,K)
in T rn.

3.1.2 Enumerative geometry formulation

Geometric parametrization of inequalities

The goal of this section is to reinterpret the triples (I, J,K) appearing in the formulation
of Theorem 3.1.4 from a geometric perspective. Inequalities (IJK) involve sums over sub-
sets of indices in [n], a type of sum which was studied by Hersch and Zwahlen [HZ62].

Recall that a flag F is a collection of nested subspaces

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn
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such that dim(Fk) = k for all 0 ⩽ k ⩽ n. Given a Hermitian matrix A with an orthonormal
eigenbasis x1, . . . , xn, we denote by F(A) the flag defined by

Fk := Vect(x1, . . . , xk), for 1 ⩽ k ⩽ n.

This flag is called the eigenflag of the matrix A. Let us define the Rayleigh trace introduced
by Fulton [Ful00].

Definition 3.1.5 (Rayleigh Trace). Let L ∈ Gr(k, n). Define AL : L → L by

ALx := PL(Ax),

where PL is the orthonormal projection from Cn onto L. The Rayleigh trace RA(L) is
defined as

RA(L) := Tr[AL].

Hersch and Zwahlen provided an expression of partial sums of eigenvalues using the
Rayleigh trace.

Lemma 3.1.6 (Partial sum of eigenvalues, [HZ62]). Let F(A) be an eigenflag of A. Then,
for every I = (i1, . . . , ik) ∈ Pk

n,∑
i∈I

αi = min
L∈Gr(k,n)

{
Tr[AL] | ∀ 1 ⩽ j ⩽ k,dim(L ∩ Fij ) ⩾ j

}
.

Therefore, partial sums of eigenvalues as the ones appearing in (IJK) inequalities from
Horn’s conjecture are related to the following subsets of the Grassmannians, known as
Schubert varieties.

Definition 3.1.7 (Schubert variety). Let F be a flag and let I = (i1, . . . , ik) ∈ Pk
n be

distinct indices. The set

ΩI(F) := {L ∈ Gr(k, n) | ∀ 1 ⩽ j ⩽ k, dim(L ∩ Fij ) ⩾ j}

is called the Schubert variety associated to the flag F and to the index tuple I.

Using this geometric formalism, one can rephrase Lemma 3.1.6 as∑
i∈I

αi = min
L∈ΩI(F(A))

Tr[AL].

This geometric interpretation leads to necessary conditions on eigenvalues due to [HR95;
Tot94], based on the non-emptiness of intersections of Schubert varieties.

Let I = (i1 . . . ik) ∈ Pk
n, and define its complementary subset I ′ := (i′1, . . . i′k) ∈ Pk

n

by
i′j = n+ 1 − ik+1−j , for 1 ⩽ j ⩽ k.

Similarily, for a flag F = (F0 ⊂ · · · ⊂ Fn), define the dual flag F ′ = (F ′
0 ⊂ · · · ⊂ F ′

n) as

F ′
i := Vect(vn+1−i, . . . , vn), for 1 ⩽ i ⩽ n.

This construction is motivated by the observation that if α1 ⩾ · · · ⩾ αn are the eigenvalues
of A, then −αn ⩾ · · · ⩾ −α1 are the eigenvalues of −A. Setting α′

i = −αi, we have for
any I ∈ Pk

n: ∑
i∈I

αi = −
∑
i∈I′

α′
i.
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Definition 3.1.8. Let r < n and let F ,G,H be flags. Define the set

Srn(F ,G,H) := {(I, J,K) ∈ U rn | ΩI′(F) ∩ ΩJ ′(G) ∩ ΩK(H) ̸= ∅} . (3.1.4)

Using Lemma 3.1.6 together with the equality C − A − B = 0, one derives the following
necessary conditions.

Theorem 3.1.9 (Schubert inequalities, [Ful00]). Let A,B and C = A+ B be Hermitian
matrices with eigenvalues α, β and γ respectively. Then, for every r < n and (I, J,K) ∈
Srn(F(A)′,F(B)′,F(C)), the inequality (IJK) holds.

Schubert calculus

Theorem 3.1.9 provides necessary inequalities that the triples (α, β, γ) must satisfy in
order to occur as eigenvalues of Hermitian matrices A,B and A + B respectively. The
goal of this section is to give a criterion to determine whether a triple of indexes (I, J,K)
belongs in the set

Srn(F(A)′,F(B)′,F(C)).

Our exposition follows the approach of [Ful00] and Part 3 of [Ful97].

To translate the intersection condition for Schubert varieties, we need to introduce tools
from the geometry of the Grassmannians. The Grassmannian Gr(k, n) can be endowed
with the structure of a compact, complex manifold of dimension k(n − k) obtained from
the quotient map

π : V 0
k (Cn) −→ Gr(k, n)

(u1 . . . , uk) 7−→ Vect(u1, . . . uk)

where V 0
k (Cn) denotes the set of k-tuples of orthonormal vectors in Cn. Furthermore, the

Plücker embedding

Gr(k, n) ↪−→ P
(

k∧
Cn
)

realises the space Gr(k, n) as an irreducible, non-singular projective variety. For L ∈
Gr(k, n) and a flag F , define the index tuple

I(L,F) := (i1 < · · · < ik)

where for each 1 ⩽ j ⩽ k,

ij := min{r | dim(L ∩ Fr) ⩾ j} .

Definition 3.1.10 (Schubert cell). Let I = (i1 < · · · < ik) ∈ Pk
n and let F be a flag. The

Schubert cell associated to I and F is the set

Ω◦
I(F) := {L ∈ Gr(k, n) | I(L,F) = I}

= {L ∈ Gr(k, n) | dim(L ∩ Fk) = j, for ij ⩽ k ⩽ ij+1 − 1, 0 ⩽ j ⩽ k},

where the condition for j = 0 being L ∩ Fn−k+1−i1 = 0, see [Ful97].
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The Schubert cell of a given index tuple I corresponds to all subspaces where the dimension
of the intersection increases by intersecting with subspaces of F with indexes in I. Such
cells partition the Grassmannian for any fixed flag F :

Gr(k, n) =
⊔
I∈Pkn

Ω◦
I(F) .

We now relate the Schubert cells with the Schubert varieties of Definition 3.1.7.

Lemma 3.1.11 (Schubert varieties are closed Schubert cells, [Ful97]). Let I ∈ Pk
n and let

F be a flag. Then, the following equalities hold:

ΩI(F) = Ω◦
I(F) =

⊔
J

Ω◦
J(F),

where the closure is taken with respect to the Zariski topology and where the sum is on
index tuples J ∈ Pk

n such that for every 1 ⩽ ℓ ⩽ k, jℓ ⩽ iℓ.

From Lemma 3.1.11, Schubert varieties are irreducible, closed subvarieties of the Grass-
mannian. The dimension of ΩI(F) is given by

d(I) =
k∑
j=1

(ij − j).

To each index tuple I = (i1 < · · · < ik) ∈ Pk
n, we associate a partition

λ(I) = (λ1 ⩾ · · · ⩾ λk)

defined by
λ(I)j := n− k + j − ij , for 1 ⩽ j ⩽ k.

We also define the size of a partition λ as

|λ| =
k∑
i=1

λi.

Let us recall the following results that can be found in [Ful97] and [Ful98b]. Set X =
Gr(k, n) and let us consider the singular homology groups Hi(X) and cohomology groups
H i(X) for i ⩾ 0. The cohomology H∗(X) =

⊕
i⩾0H

i(X) has a graded ring structure
Hℓ(X) ⊗Hk(X) → Hℓ+k(X) given by the cup product.

Each Schubert variety ΩI(F) gives a cohomology class [ΩI(F)] ∈ H2|λ(I)|(X) which does
not depend on the choice of the flag. We denote it by σI := ΩI(F) and for a partition
λ = (λ1 ⩾ · · · ⩾ λn), we write σλ to mean σI(λ). The ring H∗(X) is generated by the
classes

{σλ, n− k ⩾ λ1 ⩾ · · · ⩾ λn ⩾ 0}.
For three partitions λ, µ and ν, let us denote by cνλ,µ ∈ N the coefficient of σν in the
product σλ · σµ:

σλ · σµ =
∑
ν

cνλ,µσν , (3.1.5)

where the sum is over partitions ν such that |λ| + |µ| = |ν|. The coefficients cνλ,µ in (3.1.5)
are called the Littlewood-Richardson coefficients. The reason to consider the structure
constants of the cohomology ring of the Grassmannian is that they provide an algebraic
translation of intersections thanks to Kleiman’s transversality theorem [Kle74]. This yields
an algebraic criterion for when intersections of Schubert varieties are nonempty.



3.1. SUM OF HERMITIAN MATRICES 57

Theorem 3.1.12 (Characterization of nonempty intersection, [Ful98b; Kle74]). The fol-
lowing are equivalent

(i) The Littlewood–Richardson coefficient satisfies cλ(K)
λ(I),λ(J) > 0

(ii) (I, J,K) ∈ Skn.
Using the characterization of Theorem 3.1.12 with Theorem 3.1.9 leads to the following
result.
Corollary 3.1.13 (Littlewood-Richardson characterization of inequalities). Let A,B and
C = A+B be Hermitian matrices. Then, for every k < n and triples (I, J,K) ∈ Pk

n, such
that cλ(K)

λ(I),λ(J) > 0, the inequality (IJK) holds.
Corollary 3.1.13 provides only a necessary condition on the eigenvalues. The work of
Totaro [Tot94] and Klyachko [Kly98] give the converse and proves that these conditions of
non-vanishing of Littlewood-Richardson coefficients are also sufficient. Their proof relies
on the theory of stability of vector bundles and geometric invariant theory. We refer to
[Ful00] and [Ful98a] for details on the work of Totaro and Klyachko.
Theorem 3.1.14 (Eigenvalues of a sum, [Ful00]). Let α, β and γ be weakly decreasing
sequences in Rn such that |γ| = |α| + |β|. The following are equivalent

(i) The inequality (IJK) holds for all triples (I, J,K) ∈ Pr
n, with r < n such that

c
λ(K)
λ(I),λ(J) > 0.

(ii) There exist Hermitian matrices A, B, and C with eigenvalues α, β, and γ respec-
tively, such that A+B = C.

This result raises a natural question: how do the inequalities (IJK) indexed by triples in
Srn as in Theorem 3.1.14 compare to the recursive description of inequalities in T rn from
Theorem 3.1.4 ? The answer is that the two sets coincide.
Theorem 3.1.15 ([KTW04]). For every r < n, one has

T rn = Srn.

While the full set of inequalities indexed by Srn, or equivalently T rn , completely characterizes
the possible eigenvalues of Hermitian sums, some of these inequalities may be redundant.
Knutson, Tao and Woodward [KTW04] identified a minimal subset of inequalities which
imply the (IJK) inequalities for (I, J,K) in T rn = Srn for every r < n. This minimal subset
consists of inequalities parametrized by (I, J,K) in

Rrn :=
{

(I, J,K) ∈ U rn | cλ(K)
λ(I),λ(J) = 1

}
for r < n.

3.1.3 Littlewood-Richardson coefficients

The reduced subset of inequalities parametrized by Rrn for r < n was derived using a
combinatorial representation of the Littlewood-Richardson coefficients. This model, intro-
duced by Knutson and Tao [KT99] is called the honeycomb model. It was used to prove
the saturation conjecture which states that for any triple of partitions λ, µ and ν,

cνλ,µ ̸= 0 if and only if cNνNλ,Nµ ̸= 0 for some N ⩾ 1. (3.1.6)
The proof of the saturation conjecture by Knutson and Tao [KT99], together with the work
of Klyachko [Kly98] archieved to solve the Horn conjecture. An alternative but equivalent
combinatorial model called hives was introduced in the same article. This description was
used by Buch [Buc00] to give a proof of (3.1.6) without using honeycombs. The goal of
this section is to present the various descriptions of the Littlewood-Richardson coefficients.
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Combinatorial definition

The original formula given for the Littlewood-Richardson coefficients came from the work
of Littlewood and Richardson [LR34], see also [Ful97] and [Mac79] from which this section
borrows from. It is described in terms of Young tableaux, which we now introduce. Recall
that λ = (λ1 ⩾ · · · ⩾ λn) is a sequence of weakly decreasing, non-negative integers.

Definition 3.1.16 (Ferrers diagram). The Ferrers diagram of λ is the diagram consisting
of n rows, where the i-th row for 1 ⩽ i ⩽ n contains λi boxes with rows aligned to the left.

The Ferrers diagram of the partition λ = (6, 4, 4, 2) is shown in Figure 3.1. For two
partitions λ and µ such that λi ⩾ µi for each i, one can define the skew shape λ \ µ
by removing the boxes of the Ferrers diagram of µ from that of λ, see Figure 3.2 for an
example.

Figure 3.1: The Ferrers diagram of the
partition (6, 4, 4, 2).

Figure 3.2: The Ferrers diagram of the
skew shape (6, 4, 4, 2) \ (3, 3, 2, 1). Gray
boxes represent the Ferrers diagram of
µ = (3, 3, 2, 1).

The Littlewood-Richardson coefficients are described in terms of fillings of skew-shapes,
called semi-standard Young tableaux.

Definition 3.1.17 (Semi-standard Young tableau). A semi-standard Young tableau of
shape λ and content ν = (ν1 ⩾ · · · ⩾ νn) is a filling of the Ferrers diagram of λ with |ν|
integers such that

• each integer k ∈ [n] appears νk times,

• entries are weakly increasing in each row from left to right,

• entries are strictly increasing in each column from top to bottom.

We introduce an additional condition, called the Yamanouchi condition. It comes from
ordering the boxes of a diagram from the top row to the bottom and from right to left
within each row.

Definition 3.1.18 (Yamanouchi tableau). Let T be a semi-standard Young tableau. We
say that T satisfies the Yamanouchi condition, or that T is Yamanouchi if for any p ⩾ 1
and any k ⩾ 1, the number of times the integer k occurs in the first p boxes of T is greater
or equal to the number of occurrences of k + 1.

Figure 3.1.3 shows two examples of Yamanouchi tableaux associated to the skew shape of
Figure 3.2.
The Littlewood-Richardson coefficient cνλ,µ is given by the number of Yamanouchi tableaux
of skew shape ν \ λ having content µ.

Theorem 3.1.19 (Tableau expression of Littlewood-Richardson coefficients, [LR34]). Let
λ, µ and ν be partitions such that |ν| = |λ| + |µ|. Then, cνλ,µ is the number of Yamanouchi
tableaux of skew shape ν \ λ having content µ.
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Figure 3.3: The two Yamanouchi tableaux of shape (6, 4, 4, 2) \ (3, 3, 2, 1) and content
(4, 2, 1).

The hive model

In order to solve the saturation problem (3.1.6), Knutson and Tao [KT99] introduced a
combinatorial model called honeycombs which give another expression of the Littlewood-
Richardson coefficients. Honeycombs have an equivalent description in terms of hives that
we now define.

Consider an equilateral triangle of length n + 1 on which we draw the triangular lat-
tice having edges of unit length. The faces of this lattice are equilateral triangles of unit
length. We denote by Tn the set of vertices of this lattice. We call a lozenge or a rhombus
a subset of four vertices of Tn that are vertices of two adjacent triangular faces. A lozenge
has two acute vertices and two obtuse vertices. The central notion is the one of rhombus
concave function.

Definition 3.1.20 (Rhombus concave function, hive). A function f : Tn → R is said to
be rhombus concave if for every lozenge with acute vertices v1 and v2 and obtuse vertices
v3 and v4, one has

f(v1) + f(v2) ⩽ f(v3) + f(v4).

The data of a rhombus concave function on Tn is called a hive, see Figure 3.4 for an
example. The boundary values of a hive are given by reading successive differences on
values of the function f on consecutive vertices, read in the directions depicted in Figure
3.4 for each boundary of Tn.

0 23 43 52 55

18 38 50 54

28 44 52

33 46

34

λ µ

ν

Figure 3.4: A hive on T5 with boundary conditions λ = (18, 10, 5, 1), µ = (12, 6, 2, 1) and
ν = (23, 20, 9, 3).
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Knutson and Tao [KT99] gave another combinatorial rule to compute Littlewood-Richardson
coefficients by counting integer-valued rhombus concave functions with fixed boundary
conditions.

Theorem 3.1.21 (Hive formula, [KT99; KT01]). Let λ, µ, and ν be integer partitions.
Denote by TN(λ, µ, ν) the set of integral hives, that is, the set of integer-valued functions
f : Tn → N which are rhombus concave and whose boundary conditions are given by
(λ, µ, ν). Then,

cνλ,µ = #TN(λ, µ, ν) .

Knutson-Tao puzzles

We give another combinatorial rule to compute Littlewood-Richardson coefficients known
as the puzzle rule. This rule is close to the hive description of the previous section. The
puzzle rule was introduced in [KTW04] where it was shown to be equivalent to their hon-
eycomb description and was used by Buch [Buc00] to provide an alternative version of
the proof of the saturation conjecture adapted from [KT99]. For another approach of the
puzzle rule that does not rely on honeycombs, we refer to [KT03].

Definition 3.1.22 (One-step puzzles). A one-step puzzle, or just a puzzle is a tiling of TN
for some N ⩾ 1 using the set of edge-labeled tiles shown in Figure 3.5, such that adjacent
pieces share the same labels on their common edges. The boundary values of a puzzle are
the 02 strings obtained by reading the boundaries as in Figure 3.4.

0
00

2
22 0

2 0

2

Figure 3.5: Pieces of one-step puzzles. Pieces can be rotated but not reflected.

The boundary labels of one-step puzzles are given by sequences of 0 and 2’s. To a partition
λ = λ1 ⩾ · · · ⩾ λn such that λ1 ⩽ N − n, for some N ⩾ n, we associate a sequence of 0’s
and 2’s of size N , called a 02 string by reading the Ferrers diagram of λ from bottom to top
and left to right inside a n× (N − n) rectangle. Horizontal and vertical steps correspond
to labels 2 and 0 respectively, see Figure 3.6 for an example.

2 2
0
2 2 2

0
2 2

0
2 2

0
2 2 2

Figure 3.6: The partition (9, 7, 5, 2) gives the string 2202220220220222 for N = 16.

Theorem 3.1.23 (Puzzle rule, [KTW04; KT03]). Let n ⩽ N and consider partitions λ, µ
and ν such that their Ferrers diagrams are contained in a n×(N−n) rectangle. Then, the
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Littlewood-Richardson coefficient cνλ,µ is equal to the number of puzzles of size N having
boundaries given by the 02 strings corresponding to λ, µ and ν.
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Figure 3.7: The two puzzles corresponding to cνλ,µ = 2 for λ = (0, 1, 2, 3), µ = (0, 1, 2, 2)
and ν = (2, 2, 3, 4) in H∗(Gr(4, 8)). Pictures done with the module Knutson-Tao puzzles
of Sage [The20].

Theorem 3.1.23 gives a combinatorial rule to compute intersections of Schubert varieties
in the cohomology ring H∗(Gr(n,N)) since this ring has a basis consisting of classes (σλ)λ
parametrized by partitions λ such that λ1 ⩽ N − n, see Figure 3.7.
In [KT03], Knutson and Tao extend the set of pieces by considering the reflection of the
rhombus in Figure 3.5. The corresponding puzzles are showed to compute the structure
constants for the equivariant cohomology ring of the Grassmannians. Structure constants
for other cohomology rings have later been expressed in terms of analogous puzzle rules,
see Section 3.2.4.

3.1.4 Probabilistic version

In this section, we present a random matrix problem inspired by the deterministic setting
of the additive Horn problem. This exposition follows the work of Coquereaux, McSwiggen
and Zuber [CZ18; CMZ19; CMZ20].

Additive convolution of orbits

Let α = α1 ⩾ · · · ⩾ αn and β = β1 ⩾ · · · ⩾ βn be real-valued n tuples. The set of
Hermitian matrices with eigenvalues α is the adjoint orbit OH(α) of the diagonal matrix
Diag(α1, . . . , αn) under the adjoint action of the unitary group U(n):

OH(α) := {U Diag(α1, . . . , α)U∗, U ∈ U(n)}.

Consider a random matrix U ∈ U(n) which is Haar distributed. The continuous map

fα : U(n) → OH(α)
U 7→ U Diag(α1, . . . , α)U∗

yields the pushforward measure mH
α on the orbit OH(α) corresponding to the uniform

measure on the orbit. This measure is called the orbital measure. Consider random
matrices (A,B) independently distributed on respective orbits OH

α × OH
β , that is, having
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joint distribution mH
α ⊗ mH

β . Their sum C = A + B yields a probability measure on the
space of Hermitian matrices Hn whose eigenvalues γ = γ1 ⩾ · · · ⩾ γn have a probability
density function. The probabilistic version of the additive Horn problem asks:

What is the probability density of the eigenvalues γ ∈ Rn of C = A+B ?

From Section 3.1.1, we know that this probability density is supported on a convex poly-
tope in Rn−1 whose faces are parametrized by the (IJK) inequalities.

Integrable formula for the probabilty density

A first step towards answering the previous question is to use Fourier transform in order
to derive the probability distribution of the random matrix C = A + B and then the
probability density for its eigenvalues. This corresponds to computing the convolution of
orbital measures, see [DRW93; Kir04] for more background on orbital measures.
The Fourier transform, or characteristic function of a random Hermitian matrix A ∈ Hn

with distribution m is given by

m̂(X) := E[exp(iTr[XA])].

Let us denote by m∗ := mH
α ∗mH

β the law of C = A+B for (A,B) ∼ mH
α ⊗mH

β , that is,
the law of the sum of two uniformly distributed matrices on orbits OH

α and OH
β . Then,

m̂∗(X) = m̂H
α (X) · m̂H

β (X).

The Fourier transform of orbital measures was explicitly computed by Harish-Chandra
[Har57] and Itzykson, Zuber [IZ80]. If Dα denotes the diagonal matrix Diag(α1, . . . , αn),

m̂α(X) =
∫

U(n)
exp(iTr[UDαU

∗X])dU

By the left and right invariance of the Haar measure, the expression mα(X) only depends
on the spectra α and x = (x1, . . . , xn) of Dα and X respectively. We denote this function
by H(α, x).

m̂α(X) = m̂α(Dx) =
∫

U(n)
exp(iTr[UDαU

∗Dx])dU := H(α, x).

Lemma 3.1.24 (Harish-Chandra-Itzykson-Zuber formula, [Har57; IZ80]). One has

H(α, x) = sf(n− 1)
in(n−1)/2 · det(eixkαj )1⩽j,k⩽n

∆(x)∆(α) , (3.1.7)

where ∆(x) =
∏

1⩽j<k⩽n(xj − xk) is the Vandermonde determinant of (x1, . . . , xn) and
where sf(n) =

∏n
k=1 k!.

Using Lemma 3.1.24 and applying the inverse Fourier transform yields the probability
distribution for eigenvalues γ of A+B, see [Zub18].

Proposition 3.1.25 (Probability density for sum of adjoint orbits, [Zub18]). Let γ =
(γ1 ⩾ · · · ⩾ γn) be the eigenvalues of C = A + B where A and B are independent and
uniformly distributed over OH

α and OH
β . Then,

dP[γ|α, β] = cn
∆(γ)

∆(α)∆(β)

∫
Rn

1
∆(x) det(eixjαk) det(eixjβk) det(e−ixjγk)dx, (3.1.8)

where cn is a constant depending only on n.
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The expression of the probability density in Proposition 3.1.25 is not explicitely positive
as the determinants appearing in the integral are complex valued. We will follow the
works [Zub18; CMZ20] and [CZ18] to give an explicit expression of (3.1.8) in terms of
volumes. Computations and numerical simulations of the probability density for n ⩽ 5,
can be found in [Zub18].

Volume formula

Recall that the support of dP[γ|α, β] is an n− 1 dimensional polytope supported on

n∑
k=1

(γk − αk − βk) = 0.

Let us write the density as done in [CZ18],

dP[γ|α, β] = sf(n− 1)
n!

∆(γ)
∆(α)∆(β)J(α, β, γ)1∑n

k=1(γk−αk−βk)=0, (3.1.9)

where the function J in (3.1.9) is called the volume function. We refer to [CZ18; CMZ20]
for explicit expressions as integrals. The goal of the rest of this section is to give an explicit
description of this volume function. Let Hαβ be the polytope of Rn−1 for γ defined by
the (IJK) inequalities of Theorem 3.1.14. The name volume function comes from the
normalization with respect to the Lebesgue measure on Hαβ,

∫
Hαβ

∆(γ)
∆(α)∆(β)J(α, β, γ)dγ = 1

sf(n− 1) .

The volume function vanishes for γ outside of Hαβ. Inside Hαβ it is a non-negative
piecewise polynomial which is homogeneous of degree 1

2(n − 1)(n − 2) in α, β and γ. It
is also antisymmetric in its arguments. The link between the volume function J and
Littlewood-Richardson coefficients lies in the asymptotic expansion, which is a particular
case of limits of large dimensional representations studied in [GLS96] and [Hec82].

Proposition 3.1.26 (Volume function and Littlewood-Richardson, see [CZ18]). Let α, β
and γ be n-tuples of real numbers and partitions λ, µ and ν such that

1
N
λ → α,

1
N
µ → β and 1

N
ν → γ

entrywise. Then, as N → ∞

J(α, β, γ) = lim
N→∞

N− (n−1)(n−2)
2 cNνNλ,Nµ

Let Hγ
αβ be the polytope of hives with real boundary conditions α, β and γ, see Definition

3.1.20. From the hive model of Knutson and Tao [KT99], the Littlewood-Richardson
coefficient cνλ,µ is the number of integral valued hives, that is, the number of integral
points in Hν

λ,µ. From the relation (3.1.26), the volume function corresponds to the limit
of the number of integral points in the streched rational polytope HNν

Nλ,Nµ of dimension
d = (n− 1)(n− 2)/2 normalized by N−d. This limits corresponds to the Lebesgue volume
of the polytope. One derives the volume expression for the function J .
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Theorem 3.1.27 (Volume expression, [CZ18]). One has

J(α, β, γ) = Vol(Hγ
α,β), (3.1.10)

so that
dP[γ|α, β] = sf(n− 1)

n!
∆(γ)

∆(α)∆(β) Vol(Hγ
α,β). (3.1.11)

Remark 3.1.28 (Symplectic geometry approach). An alternative derivation of the volume
formula uses symplectic geometry and moment maps, as described in Knutson’s survey
[Knu00]. In particular, Theorem 4 in [KT01] expresses the probability density as the
volume of a symplectic quotient. An open question raised by Knutson and Tao is to
construct an explicit measure-preserving map from the symplectic quotient to the hive
polytope.

3.2 Products of unitary matrices

This section presents an analog of the additive Horn problem from Section 3.1, known as
the multiplicative or unitary Horn problem. This problem concerns products of unitary
matrices. As in the Hermitian version, the goal is to characterize the possible eigenval-
ues of such products when the spectra of the individual matrices are prescribed. Section
3.2.1 presents this latter problem from a linear algebraic perspective. As the Hermitian
Horn problem of Section 3.1, the unitary Horn problem involves combinatorial coefficients
called quantum Littlewood-Richardson coefficients, which count certain rational maps. Sec-
tion 3.2.2 explains how the multiplicative Horn problem relates to this counting problem.
Quantum Littlewood-Richardson coefficients are related to the quantum cohomology of
the Grassmannians, which is introduced in Section 3.2.3. As with the classical Littlewood-
Richardson coefficients, a puzzle rule has been established to compute the quantum version.
This puzzle rule is presented in Section 3.2.4. Finally, products of unitary matrices are
related to the computation of volumes of moduli spaces of flat connections on Riemann
surfaces. This geometric perspective is presented in Section 3.2.5.

3.2.1 Eigenvalues of products of unitary matrices

The multiplicative or unitary Horn problem asks the following question:

Given two unitary matrices, which eigenvalues can arise for their product ?

This question was answered by Agnihotri and Woodward [AW98] who gave inequalities
that determine the possible eigenvalues of a product of unitary matrices. At the same
time, Belkale [Bel01] addressed the same question by solving a problem of Katz [Kat96]
on local systems over the Riemann sphere. Biswas [Bis98] had previously solved the mul-
tiplicative Horn problem in dimension n = 2.

Let n ⩾ 1 be an integer and let A,B ∈ U(n) be unitary matrices. Up to shifts by
det(A) and det(B) which are complex numbers of modulus 1, one can assume that A and
B have unit determinant. Therefore, in this section, we consider matrices in the special
unitary group

SU(n) := {U ∈ Mn(C) | U∗U = In, det(U) = 1} .
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For A ∈ SU(n), its eigenvalues lie on the unit circle S1 and can be parametrized by angles

α = (α1 ⩾ · · · ⩾ αn) ,

where αk ∈ [0, 1] for 1 ⩽ k ⩽ n and such that
∑

1⩽k⩽n αk ∈ N. Let us denote by

O(α) :=
{
U Diag(e2iπα1 , . . . , e2iπαn)U∗, U ∈ U(n)

}
the orbit of α, that is, the matrices in SU(n) having eigenvalues e2iπα1 , . . . , e2iπαn . The
results of Agnihotri, Woodward [AW98] and Belkale [Bel01], give necessary and sufficient
inequalities relating eigenvalues of matrices (A,B,C) satisfying the relation ABC = 1.
Let us introduce the corresponding matrix space for any number of factors A1, . . . , Aℓ
with ℓ ⩾ 1 and prescribed orbits (θ1, . . . , θℓ) where θk = (θk,1 ⩾ · · · ⩾ θk,n):

{(A1, . . . , Aℓ) ∈ O(θ1) × · · · × O(θℓ) | A1 · · ·Aℓ = In} .

The previous set is stable by conjugation of each factor. Let us denote the quotient by

M(θ1, . . . , θℓ) := {(A1, . . . , Aℓ) ∈ O(θ1) × · · · × O(θℓ) | A1 · · ·Aℓ = In} /SU(n) . (3.2.1)

The multiplicative Horn problem therefore asks:

which tuples (α, β, γ) give an non-empty set M(α, β, γ) ?

3.2.2 Representation of fundamental group and parabolic bundles

Representation theory aspect

Similar to the additive Horn problem, the description of possible tuples (θ1, . . . , θℓ) for
which M(θ1, . . . , θℓ) is not-empty relies on inequalities parametrized by integer-valued
coefficients called Gromov–Witten invariants which count rational maps. Before introduc-
ing these coefficients in the next section, we provide motivation for why counting rational
maps is relevant for the description of M(θ1, . . . , θℓ).

Let P1
C be the Riemann sphere. For ℓ ⩾ 1, the set P1

C \ {p1, . . . , pℓ} is called the ℓ-holed
sphere. The fundamental group of the ℓ holed sphere, based at a point x ∈ P1

C\{p1, . . . , pℓ},
denoted by

π1 := π1
(
P1
C \ {p1, . . . , pℓ}, x

)
is the free group with ℓ generators c1, . . . , cℓ corresponding to loops around each punctured
point p1, . . . , pℓ with the relation c1 · · · cℓ = 1:

π1 = ⟨c1, . . . , cℓ | c1 · · · cℓ = 1⟩.

A representation ρ : π1 → SU(n) of the fundamental group therefore is determined by
the unitary matrices ρ(c1), . . . , ρ(cℓ). The space M(θ1, . . . , θℓ) can be viewed as the space
of representations of the fundamental group of the ℓ-holed sphere with fixed conjugacy
classes for the generators as described in [AW98; Bel01].

M(θ1, . . . , θℓ) ≃ {ρ : π1 → SU(n) | ρ(ck) ∈ O(θk), 1 ⩽ k ⩽ ℓ} /SU(n). (3.2.2)
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Parabolic bundles

By the previous section, the multiplicative Horn problem is equivalent to providing rep-
resentations of the fundamental group of the ℓ = 3 holed sphere. A geometric condition
equivalent to the existence of these representations can be stated in terms of existence
of parabolic vector bundles over P1

C that we introduce in this section. Our presentation
follows [AW98; Bel01] and relies on the work of Mehta and Seshadri [MS80] from which
the main result of this section is derived.

Definition 3.2.1 (Parabolic vector bundle). Let C be a Riemann surface with ℓ marked
points p1, . . . , pℓ. A parabolic vector bundle over C consists of a rank n vector bundle V ,
together with:

• for each 1 ⩽ k ⩽ ℓ, a complete flag of the fiber Vpk at pk,

Vk : 0 = Vk,0 ⊂ Vk,1 ⊂ · · · ⊂ Vk,n = Vpk ,

• real-valued weights ak,1 ⩾ ak,2 ⩾ · · · ⩾ ak,n ⩾ ak,1 − 1.

The parabolic degree of V is defined as

pardeg(V ) := deg(V ) +
ℓ∑

k=1

n∑
i=1

ak,i ,

where the degree of a vector bundle is the one of the first Chern class c1 ∈ H2(C,Z) ≃ Z.

Subbundles of parabolic vector bundles can be endowed with a parabolic structure as
follows. Let W ⊂ V be a subbundle of rank r of a parabolic vector bundle V . For each
marked point pk, 1 ⩽ k ⩽ ℓ, the complete flag Wk of the fiber Wpk is given by

0 = Wk,0 ⊂ Wk,1 = (Wpk ∩ Vk,1) ⊂ · · · ⊂ Wk,n = (Wpk ∩ Vk,n) = Wpk ,

where subspaces with equal dimension are removed to yield a complete flag. For 1 ⩽ k ⩽
ℓ, 1 ⩽ i ⩽ r, the weights (a′

k,i) of W are defined as

a′
k,i = ak,j where j = inf{s ⩾ 1 : Wk,i = Wk ∩ Vk,s}.

The central notion related to the existence of representations is the one of stability.

Definition 3.2.2 (Stability). A parabolic vector bundle V is called stable, respectively
semi-stable, if for every subbundle W of V , one has pardeg(W ) < pardeg(V ), respectively
pardeg(W ) ⩽ pardeg(V ).

According to the work of Mehta and Seshadri [MS80] and as reviewed in the appendix of
[Bel01], the existence of (semi-)stable parabolic vector bundles is equivalent to the exis-
tence of (irreducible) representations of the fundamental group. We consider ℓ conjugacy
classes in SU(n) with parameters

θk,i, 1 ⩽ k ⩽ ℓ, 1 ⩽ i ⩽ n.

Without loss of generality, one can assume that for each k,
n∑
i=1

θk,i = 0 and θk,1 − θk,n ⩽ 1.
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Theorem 3.2.3 (Representations and stability, [MS80]). There exists a representation
(respectively an irreducible representation)

ρ : π1(P1
C \ {p1, . . . , pℓ}, x) → SU(n)

such that ρ(ck) ∈ O(θk) for 1 ⩽ k ⩽ ℓ if and only if there exists a semi-stable (respectively
stable) parabolic bundle of parabolic degree zero with weights θk,i.

We are now left to understand the semi-stable parabolic bundles over P1
C which is a

condition on any subbundle over P1
C. From [AW98; Bel01], subbundles of rank r and

degree −d are in correspondance with holomorphic maps

f : P1
C → Gr(r, n)

of degree d, where the degree a map f is defined as the integer given by homology class
[f ] ∈ H2(Gr(r, n),Z) ≃ Z. This correspondance is obtained by pulling back the tautolog-
ical bundle S over Gr(r, n) defined as S = {(V, v), V ∈ Gr(r, n), v ∈ V }.

The pullback bundle f∗S has degree −d and inherits a parabolic structure from the bundle
Cn over P1

C having weights θk,i. For each 1 ⩽ k ⩽ ℓ, the image point f(pk) ∈ Gr(r, n) lies in
a Schubert variety ΩIk(Fk) for some generic flag Fk and index tuple Ik = (ik,1 < · · · < ik,r).
The weights of the parabolic subbundle f∗S are then

θk,i, 1 ⩽ k ⩽ ℓ, i ∈ Ik.

Therefore, the semi-stability condition

pardeg(f∗S) ⩽ 0

can be written
ℓ∑

k=1

∑
i∈Ik

θk,i ⩽ d.

We thus obtain inequalities parametrised by subsets I1, . . . , Iℓ of size r and integers d ⩾ 0
which are valid whenever there exists a rational map f : P1

C → Gr(r, n) of degree d which
passes through the Schubert varieties associated with the subsets Ik. These inequalities
determine the existence of semi-stable parabolic bundles and hence, of representations by
Theorem 3.2.3.

3.2.3 Quantum Cohomology of the Grassmannians

Gromov–Witten invariants

In the light of the inequalities obtained at the end of Section 3.2.2, one must characterize
the number of rational maps from the Riemann sphere to the Grassmannians passing
though prescribed Schubert varieties. Such numbers are called Gromov–Witten invariants.
We refer to [MS04] for a detailed construction of these invariants.

Definition 3.2.4 (Gromov–Witten invariants). Let (I1, . . . , Iℓ) ∈ (Pr
n)ℓ be index subsets

of [n] of size r ⩽ n and let d ⩾ 0 be an integer. Let p1, . . . , pℓ be points in P1
C and F1, . . . ,Fℓ

be flags. The Gromov–Witten invariant ⟨σI1 , . . . , σIℓ⟩d is the number of holomorphic maps
f : P1

C → Gr(r, n) of degree d such that for each 1 ⩽ k ⩽ ℓ, f(pk) ∈ ΩIk(Fk). This number
is set to be zero if there is an infinite number of such maps.
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We now state the main theorem that solves the multiplicative Horn problem established
by Agnihotri, Woodward [AW98] and Belkale from [Bel01].

Theorem 3.2.5 (Characterisation of eigenvalues for products of unitary matrices, [AW98;
Bel01]). Let n ⩾ 1. Let (θ1, . . . , θℓ) be such that for every 1 ⩽ k ⩽ ℓ,

θk,1 ⩾ · · · ⩾ θk,n,
n∑
i=1

θk,i = 0 and θk,1 − θk,n ⩽ 1.

Then, there exists matrices A1, . . . , Aℓ ∈ SU(n) such that for each 1 ⩽ k ⩽ ℓ, Ak ∈ O(θk)
satisfying A1 · · ·Aℓ = In if and only if the inequalities

ℓ∑
k=1

∑
i∈Ik

θk,i ⩽ d.

hold for every I1, . . . , Iℓ of size r < n such that ⟨σI1 , . . . , σIℓ⟩d > 0.

A shortened list of necessary and sufficient inequalities is given by replacing the condition
⟨σI1 , . . . , σIℓ⟩d > 0 by ⟨σI1 , . . . , σIℓ⟩d = 1, see [Bel01]. Theorem 3.2.5 gives a characteri-
zation for products with any number of factors ℓ while the multiplicative Horn problem
deals with ℓ = 3. In the rest of this section, we will consider the case ℓ = 3.

Quantum cohomology ring

Recall that the cohomology ring of the GrassmannianH∗(Gr(n,N)) has a basis (σλ)λ given
by cohomology classes associated to Schubert varieties parametrized by non-increasing
sequences of integers λ = (λ1 ⩾ · · · ⩾ λn) with λn ⩾ 0 and λ1 ⩽ N − n. Such a sequence
λ is equivalent to an increasing subset I(λ) = 1 ⩽ i1 < · · · < in ⩽ N with

ij = N − n+ j − λj , 1 ⩽ j ⩽ n .

For a subset I(λ), denote by I ′ the subset i′1 < · · · < i′n defined by

i′j = N + 1 − in+1−j , 1 ⩽ j ⩽ n

which is the subset I(λ∨) where

λ∨
j = N − n− λn+1−j , 1 ⩽ j ⩽ n .

For three non-increasing sequences λ, µ, ν with respective associated subsets I, J,K and
an integer d ∈ N called the degree of the coefficient, set

cν,dλ,µ := ⟨σI , σJ , σK′⟩d = ⟨σλ, σµ, σν∨⟩d ,

where for partitions λ, µ, ν,

⟨σλ, σµ, σν⟩d = ⟨σI(λ), σI(µ), σI(ν)⟩d .

The quantum cohomology ring of the Grassmannian is a deformation of the cohomology
ring H∗(Gr(n,N)) introduced by Vafa [Vaf92], see also the work of Bertram [Ber97] and
Chapter 11 of [MS04]. It is defined as

QH∗(Gr(n,N),Z) := H∗(Gr(n,N),Z) ⊗ Z[q] ,
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with basis (σλ ⊗ 1)λ as a Z[q] module. For simplicity, we write qdσλ for σλ ⊗ qd. The ring
structure is given by the quantum product

σλ · σµ =
∑
ν,d⩾0

cν,dλ,µq
dσν

where the sum is over non-increasing sequences ν such that

|λ| + |µ| = |ν| +Nd .

We refer to [RT94; KM97] for the non-trivial fact that the above product yields an as-
sociative ring structure. The first term in the sum corresponds to classical Littlewood-
Richardson coefficients since

cν,0λ,µ = cνλ,µ .

3.2.4 Puzzle rule

This section presents a combinatorial rule to compute quantum Littlewood-Richardson
coefficients. We first show that Gromov–Witten invariants are particular instances of
structure constants for the cohomology ring of the two-step flag variety. This result is
based on Buch’s span and kernel bijection [Buc03; BKT03]. Buch, Kresch, Purbhoo and
Tamvakis [Buc+16] proved a conjecture of Knutson, showing that the structure constants
of the cohomology ring of the two-step flag variety can be computed using a puzzle rule.
In particular, this provides a puzzle rule for computing quantum cohomology coefficients
as presented in Corollary 3.2.10.

Two-step flag variety

The two-step flag variety is the data of two subspaces, one included in the other, with
prescribed dimensions.

Definition 3.2.6 (Two-step flag variety). Let N ⩾ 1 be an integer. For 1 ⩽ k ⩽ n ⩽ N ,
the two-step flag variety F (k, n,N) is defined as

F (k, n,N) := {(A,B) | A ⊂ B ⊂ CN ,dim(A) = k, dim(B) = n}.

The two-step flag variety also admits a decomposition by Schubert varieties as in the
case of the Grassmannians. Schubert varieties of the two-step flag variety F (k, n,N) are
parametrized by permutations w ∈ SN .

Definition 3.2.7 (Schubert variety in F (a1, a2, N), [BKT03]). Let w ∈ SN be a permu-
tation such that w(i) < w(i + 1) for i /∈ {a1, a2} and let F : F0 ⊂ · · · ⊂ FN be a flag in
CN . The Schubert variety Xw(F) of the two-step flag variety F (a1, a2, N) is defined by

Xw(F) :=
{

(A1, A2) ∈ F (a1, a2, N) |
dim(Ai ∩ Fj) ⩾ #{p ⩽ ai | w(p) > N − j}
i ∈ {1, 2}, 1 ⩽ j ⩽ N

}
.

Schubert varieties Ωλ(F) = ΩI(λ)(F) of Gr(n,N) can also be parametrized by permu-
tations w ∈ SN . To λ = (λ1 ⩾ · · · ⩾ λn), one associates the unique permutation
w = wλ ∈ SN satisfying w(i) = λn+1−i+ i for i ⩽ n and w(i) < w(i+1) for k+1 ⩽ i ⩽ N .
Then,

Ωλ(F) = {L ∈ Gr(n,N) | dim(L ∩ Fj) ⩾ #{p ⩽ n | w(p) > N − j}, 1 ⩽ j ⩽ N} .
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The main result of Buch [Buc03] is to associate to any rational map f : P1
C → Gr(n,N)

of degree d an element in F (n− d, n+ d,N) given by two subspaces, called the kernel and
the span of the map which allows for simpler computations in the quantum cohomology
ring.

Definition 3.2.8 (Span and kernel of a curve, [Buc03; BKT03]). Let f : P1
C → Gr(n,N)

be a rational map of degree d ⩾ 0. The span and kernel of f are defined as

Span(f) :=
∑
p∈P1

C

f(p), Ker(f) :=
⋂
p∈P1

C

f(p).

The space Span(f) is the smallest subspace containing all the n dimensional subspaces
f(p) while Ker(f) is the largest subspace contained in every subspace f(p). We give the
main result of [BKT03]. To a subvariety X ⊂ Gr(n,N), we associate

X(d) := {(A,B) ∈ F (n− d, n+ d,N) | A ⊂ X ⊂ B} ,

which is a subvariety of F (n−d, n+d,N). In particular, if Ωλ(F) is a Schubert variety in
Gr(n,N), Ω(d)

λ (F) is a Schubert variety in F (n−d, n+d,N) associated to the permutation
obtained from wλ by sorting the values of w(n − d + 1), . . . , w(n + d) in the increasing
order, see [BKT03]. The main result of [BKT03] is the following.

Theorem 3.2.9 (Quantum to classical bijection, [BKT03]). Let λ, µ, ν be partitions such
that |λ| + |µ| + |ν| = n(N − n) +Nd and let F ,G,H be flags of CN . The map

f 7→ (Ker(f), Span(f))

is a bijection between the set of holomorphic maps f : P1
C → Gr(n,N) of degree d such that

f(0) ∈ Ωλ(F), f(1) ∈ Ωµ(G) and f(∞) ∈ Ων(F) with the set of points in the intersection
Ω(d)
λ (F) ∩ Ω(d)

µ (G) ∩ Ω(d)
ν (H) in F (n− d, n+ d,N).

From Theorem 3.2.9, Buch, Kresch and Tamvakis derive an expression of the quantum
Littlewood-Richardson number as classical intersection numbers in the cohomology ring
of the two-step flag variety.

Corollary 3.2.10 ([BKT03]). If
[
Ω(d)
λ

]
denotes the cohomology class of Ω(d)

λ in the coho-
mology ring H∗(F (n− d, n+ d,N)),

⟨σλ, σµ, σν⟩d =
∫
F (n−d,n+d,N)

[Ω(d)
λ ] · [Ω(d)

µ ] · [Ω(d)
ν ].

In [BKT03], it was conjectured that a puzzle rule would give a combinatorial way of
computing the intersection number of Corollary 3.2.10. This conjecture was proved by
Buch, Kresch, Purbhoo and Tamvakis in the work [Buc+16] presented in the next section.

Puzzle rule for two-step variety

Thanks to Corollary 3.2.10, quantum Littlewood-Richardson coefficients are particular
instances of structure constants for the cohomology ring H∗(F (k, n,N)) which has ba-
sis ([Xw])w given by Schubert varieties of Definition 3.2.7. As presented in [Buc+16],
it is more convenient to index Schubert varieties of F (k, n,N) by words of length N in
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the alphabet {0, 1, 2} called 012 strings having k labels 0, n − k labels 1 and N − n la-
bels 2. A permutation w ∈ SN corresponds to the 012 string where 0’s are in positions
w(1), . . . , w(k), 1’s are in positions w(k + 1), . . . , w(n) and the remaining entries are 2’s,
as described in [BKT03]. For a 012 string u, we write Xu for the Schubert variety Xw of
the associated permutation w.

In the case where the Schubert variety arises from a partition λ, that is, if

Xw = Ω(d)
λ ∈ F (n− d, n+ d,N),

the 012 string u = u(λ) such that Xw = Xu can be obtained by replacing the first d
occurrences of 2 and the last d occurrences of 0 in the 02 code of λ of Figure 3.6 by 1’s,
see Figure 3.8 for an example.

1 1
0
2 2 2

0
2 2

1
2 2

1
2 2 2

Figure 3.8: The partition (9, 7, 5, 2) gives the string 1102220221221222 for N = 16.

The main result of [Buc+16] states that for three Schubert varieties Xu, Xv and Xw

associated to 012 strings u, v and w, the intersection number∫
F (k,n,N)

[Xu] · [Xv] · [Xw]

can be computed by a puzzle rule thereby generalizing Theorem 3.1.23 on one-step puzzles
of Definition 3.1.22.

Definition 3.2.11 (Two-step puzzle, [Buc+16]). A two-step puzzle is a tiling of TN for
some N ⩾ 1 by the set of edge labeled tiles of Figure 3.5 such that labels of adjacent pieces
coincide.

0
00

1
11

2
22 1

0 2 2
1
022

0

2 0

2 1
0 0 2

1
002

Figure 3.9: Tiles used in two-step puzzles. Tiles can be rotated. Pieces four and six may
contain an arbitrary number of 2s and 0s, respectively.

Theorem 3.2.12 (Puzzle rule for two-step flag variety, [Buc+16]). Let Xu, Xv and Xw

be three Schubert varieties in F (k, n,N). Then, the number∫
F (k,n,N)

[Xu] · [Xv] · [Xw]

is given by the number of two-step puzzles for which u, v and w are the respective boundary
labels of left, right and bottom sides in clockwise order.
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As a corollary, the quantum Littlewood-Richardson coefficient cν,dλ,µ for |λ| + |µ| = |ν| +Nd
is equal to the number of two-step puzzles with boundary 012 strings associated to λ, µ
and ν∨, see an example in Figure 3.10.

cν,dλ,µ = ⟨σλ, σµ, σν∨⟩ =
∫
F (n−d,n+d,N)

[X(d)
λ ] · [X(d)

µ ] · [X(d)
ν∨ ].
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Figure 3.10: The two puzzles corresponding to cν,dλ,µ = 2 for λ = (5, 2, 1, 0), µ = (4, 4, 1, 0)
and ν = (4, 2, 1, 0) in QH∗(Gr(4, 10)) and d = 1. Pictures done with the module Knutson-
Tao puzzles of Sage [The20].

Finally, we mention an alternative positive formula for computing the structure constants
of the cohomology ring of the two-step flag variety, due to Coskun [Cos09]. This approach
uses a sequence of diagrams known as Mondrian tableaux, which record intersections of
Schubert varieties.

3.2.5 Moduli space of flat connections

Principal bundles and connections

This section establishes the relation between the multiplicative Horn problem and flat
connections over Riemann surfaces. Flat connections were studied by Narasimhan and
Seshadri [NS65] from the point of view of holomorphic bundles. Let us give the main
definitions of a principal bundle and connections. For more details on notions and results
presented in this section, we refer the reader to [BM94; Ish99; Mor01].

Definition 3.2.13 (Principal bundle). Let P and M be smooth manifolds and let G be
a Lie group acting on P on the right, whith the action denoted by (p, g) 7→ pg. The
projection onto orbits is denoted by ρ : P → P/G. A fiber bundle ξ = P

π→ M is a
principal bundle with group G if

• G acts freely on P ,

• ξ is isomorphic to the projection bundle ρ : P → P/G,

• For any local trivialisation ϕ : U ×G → π−1(U), for every u ∈ U ,

g 7→ ϕ(u, g) ∈ π−1(U) ≃ G

is a homomorphism.
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From the isomorphism with the projection bundle and the free action of the group, the
fibers π−1(x), x ∈ M are orbits of P under the action of G. Let g denote the Lie algebra
of the Lie group G. For our purposes, we will consider M to be a Riemann surface.

Definition 3.2.14 (Connection as g-valued one form). A connection is a g-valued one-
form ω ∈ Ω1(M) ⊗ g. The curvature form F : Ω1(M) ⊗ g → Ω2(M) ⊗ g is defined
as

F (ω) = dω + 1
2[ω, ω].

A connection ω is called flat if F (ω) = 0. An equivalent description of a connection on a
principal bundle is given by equivariant paths liftings, see [Ish99].

Definition 3.2.15 (Equivariant path lifting). Let ξ = P
π→ M be a principal bundle with

group G and let I = [0, 1]. An equivariant path lifting associates to each smooth curve
α : I → M and p ∈ π−1(α(0)), a curve α̃p : I ′ ⊂ I → P such that

• π ◦ α̃p = α,

• ∀g ∈ G,∀t ∈ I ′ : α̃pg(t) = α̃p(t)g.

Consider a curve α : I → M such that α(0) = α(1). A connection, or equivalently, an
equivariant path lifting, lifts the curve α to α̃. Let p ∈ P such that π(p) = α(0). Since
p′ = α̃(1) lies in the same fiber as p and since the action of G is free, there exists g ∈ G,
called the holonomy of the curve α such that p′ = pg. As the fibers are orbits of the G-
action, holonomies at two different base points p1 and p2 in the fiber of α(0) are conjugate.
For a connection ω and a curve α, denote by holω(α) ∈ G its holonomy.
Up to conjugation, the holonomy is defined for each curve. Flatness of a connection im-
plies that the holonomy of a curve only depends on its homotopy class.

The space of connections on a compact, oriented surface is an infinite dimensional space.
There is an action, called gauge action of the space G = C∞(M, g) on the space of flat con-
nections on M denoted by AM which preserves the curvature form F . We refer to [Mor01]
for details on this action. Once quotiented by this action, the space of flat connections
becomes a finite dimensional manifold. Via holonomies, this quotient space is isomorphic
to the space of homomorphisms from the fundamental group of the surface to the group
G up to conjugation.

Theorem 3.2.16 (Moduli space of flat connections). The map

AM/G → Hom(π1(M), G)/G
ω 7→ holω(·)

is an isomorphism.

When M is the Riemann sphere with ℓ ⩾ 1 boundary components, its fundamental group
π1(M) admits the presentation

π1(M) = ⟨c1, . . . , cℓ | c1 · · · cℓ = 1⟩.

Therefore, for G = SU(n), the space of flat connections on M = P1 \ {p1, . . . , pℓ} with
holonomies in conjugacy classes θ1, . . . , θℓ for loops around punctured points is isomorphic
to M(θ1, . . . , θℓ) defined in (3.2.1):

{ω ∈ AM | holω(αi) ∈ O(θi), 1 ⩽ i ⩽ ℓ}/G ≃ M(θ1, . . . , θℓ) (3.2.3)
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Volume of moduli space of flat connections

The space of flat connections modulo the gauge action (3.2.3) admits a symplectic struc-
ture. This was established by Goldman [Gol84] from the perspective of fundamental group
representations, and by Atiyah and Bott [AB83]. Atiyah, Bott, and Witten [Wit91] pro-
vided formulas for its symplectic volume, expressed as a sum over characters indexed by
the irreducible representations of the group G. Witten used formulas established by Ver-
linde [Ver88], via a different approach, to compute explicit volumes in the case where the
surface is the Riemann sphere and G = SU(2). Volumes of moduli space of flat connec-
tions are related to the Yang-Mills measure [Lév00] in the small surface regime, see [For93].

Any orientable Riemann surface of genus g ⩾ 0 with ℓ holes can be decomposed into
2g − 2 + ℓ three-holed spheres. Therefore, the volume for more general surfaces can be
derived from that of the three holed-sphere via a gluing procedure, see [MW99; Wit92].
Computing the volume of flat SU(n) connections on the three-holed sphere is therefore a
first step towards volume computations for arbitrary Riemann surfaces. Chapter 6 presents
a formula for this volume as a positive sum of polytope volumes.

3.3 Contributions to the subject

In this section, we present our results related to products of random unitary matrices,
corresponding to the articles [FT24] and [Fra24] respectively presented in Chapters 6 and
7 of this thesis.

3.3.1 A positive density formula

In this section, we describe our results on a probabilistic version of the unitary Horn
problem from Section 3.2. This can be seen as an analogue to the probabilistic version
of the Hermitian Horn problem presented in Section 3.1.4. The main result of Section
3.1.4, namely Theorem 3.1.27 from [CZ18], expresses the density of the sum of random
Hermitian matrices as the volume of the hive polytope from Knutson and Tao [KT99].
In the work [FT24], we give an expression for the probability density of eigenvalues of a
product of unitary matrices in a similar fashion as a sum of volumes of explicit polytopes.

The set of conjugacy classes of U(n) is homeomorphic to the quotient H = (Rn/Zn) /Sn,
where the symmetric group Sn acts on (Rn/Zn) by permutation of the coordinates.
This quotient space is described by the set of non-increasing sequences of [0, 1[n. For
θ = (θ1 ⩾ θ2 ⩾ · · · ⩾ θn) ∈ H, let us denote by O(θ) the corresponding conjugacy class

O(θ) :=
{
Ue2iπθU∗, U ∈ U(n)

}
, where e2iπθ =


e2iπθ1 0 . . .

0 e2iπθ2

... . . .
e2iπθn

 .

The product structure on U(n) translates into a convolution product

∗ : M1(H) × M1(H) → M1(H)

on the space of probability distributions on H such that for θ, θ′ ∈ H, δθ ∗ δθ′ is the distri-
bution of p(UθUθ′), where Uθ (resp. Uθ′) is sampled uniformly on O(θ) (resp. O(θ′)) and
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p : U(n) → H maps an element of U(n) to its conjugacy class in H.

Let us denote by Hreg = {θ ∈ H, θ1 > θ2 > . . . > θn} the set of regular conjugacy classes
of U(n), namely the ones of maximal dimension in U(n). For α, β ∈ Hreg, δα ∗ δβ admits
a density dP[·|α, β] with respect to the Lebesgue measure on{

γ ∈ H |
n∑
i=1

αi +
n∑
i=1

βi −
n∑
i=1

γi ∈ N
}
.

The toric hive cones Cg

The main result of [FT24] is a positive formula for dP[·|α, β] in terms of the volume of
polytopes similar to the hive model of Knutson and Tao [KT99]. For 0 ⩽ d ⩽ n, define
the toric hive Rd,n as the set

Rd,n :=
{

(v1, v2) ∈ J0, nK2, d ⩽ v1 + v2 ⩽ n+ d
}
,

which can be represented as a discrete hexagon through the map (v1, v2) 7→ v1 + v2e
iπ/3,

see Figure 3.11 for a particular case and its hexagonal representation.

• • •

• • • •

• • •

• •

Figure 3.11: The set R1,3 represented through the map (v1, v2) 7→ v1 + v2e
iπ/3.

Boundary of the toric hive

For any set S and any function f : Rd,n → S, we denote by fA (resp fB, fC) the vector
(f((d− i) ∨ 0, (n+ d− i) ∧ n)0⩽i⩽n (resp. (f(n+ d− i∧ n, i))0⩽i⩽n, resp. (f(n− i, i+ d−
n ∨ 0))0⩽i⩽n). The vectors fA, fB and fC correspond respectively to the north-west, east
and south-west boundaries of Rd,n through the hexagonal representation, see Figure 3.12.

Toric rhombus concavity

Let us call a lozenge of Rd,n any sequence (v1, v2, v3, v4) ∈ (Rd,n)4 corresponding to one
of the three configurations of Figure 3.13 in the hexagonal representation (in which |vi −
vi+1| = 1 for 1 ⩽ i ⩽ 3).

Definition 3.3.1 (Regular labeling). A function g : Rd,n → Z3 is called a regular labeling
whenever

• gAi = n+ i[3], gBi = i[3] and gCi = i[3],

• on any lozenge ℓ = (v1, v2, v3, v4),(
g(v2) = g(v4)

)
⇒
{
g(v1), g(v3)

}
=
{
g(v2) + 1, g(v2) + 2

}
.



76 CHAPTER 3. HORN PROBLEMS
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Figure 3.12: The set boundary vectors fA, fB and fC .
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•
v4

• v3
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•
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• v1

Figure 3.13: The three possible lozenges (v1, v2, v3, v4) (the position of the vertices can
not be permuted).

A lozenge (v1, v2, v3, v4) for which (g(v1), g(v2), g(v3), g(v4)) = (a, a + 1, a + 2, a + 1) for
some a ∈ {0, 1, 2} is called rigid. The support of a regular labeling g : Rd,n → Z3 is the
subset Supp(g) ⊂ Rd,n of vertices of Rd,n which are not a vertex v4 of a rigid lozenge
(v1, v2, v3, v4).

An example of regular labeling is shown in Figure 3.14.

1 2 0

0 0 0 1

2 1 2

1 0

Figure 3.14: A regular labeling on Rd,n. Rigid lozenges are shaded.

Definition 3.3.2 (Toric hive cone). A function f : Rd,n → R is called toric rhombus con-
cave with respect to a regular labeling g : Rd,n → Z3 when f(v2) + f(v4) ⩾ f(v1) + f(v3)
on any lozenge ℓ = (v1, v2, v3, v4), with equality if ℓ is rigid with respect to g.
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For any regular labeling g, the toric hive cone Cg with respect to g is the cone

Cg =
{
f|Supp(g) | f : Rd,n → R toric rhombus concave with respect to g

}
.

The hive cone from [KT99] is then a particular case of toric hive cone for d = 0. An
example of a toric rhombus concave function in the case n = 3, d = 1 is given in Figure
3.15.
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Figure 3.15: A toric rhombus convave function for n = 3, d = 1: shaded lozenge are the
rigid ones yielding the equality cases in the toric rhombus concavity.

Definition 3.3.3 (Polytope P gα,β,γ). Let n ⩾ 3 and let α, β, γ ∈ Hreg be such that∑n
i=1 αi +

∑n
i=1 βi =

∑n
i=1 γi + d with d ∈ N. Let g be a regular labeling on Rd,n. Then,

P gα,β,γ is the polytope of RSupp(g)\∂Rd,n consisting of functions in Cg such that

fA =
(

n∑
s=1

βs +
i∑

s=1
αs

)
0⩽i⩽n

, fB =
(

(d− i)+ +
i∑

s=1
βs

)
0⩽i⩽n

, fC =
(
d+

i∑
s=1

γs

)
0⩽i⩽n

.

An example of an element of P gα,β,γ for n = 3 and d = 1 is depicted in Figure 3.15, for
α =

(
13
23 ⩾ 6

23 ⩾ 2
23

)
, β =

(
18
23 ⩾ 10

23 ⩾ 5
23

)
and γ =

(
20
23 ⩾ 9

23 ⩾ 2
23

)
.

Our main result gives then a formula for the density of the convolution of regular conjugacy
classes as a sum of volumes of polytopes coming from Cg for regular labeling g.

Theorem 3.3.4 (Probability density for product of conjugacy classes). Let n ⩾ 3 and let
α, β, γ ∈ Hreg be such that

∑n
i=1 αi +

∑n
i=1 βi =

∑n
i=1 γi + d with d ∈ N. Then,

dP[γ|α, β] = (2π)(n−1)(n−2)/2∏n−1
k=1 k!∆′(e2iπγ)

n!∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 regular
Volg(P gα,β,γ), (3.3.1)

where ∆′(e2iπθ) = 2n(n−1)/2∏
i<j sin (π(θi − θj)) for θ ∈ H and Volg denotes the volume

with respect to the Lebesgue measure on RSupp(g)\∂Rd,n.

As presented in (3.2.3) of Section 3.2.5, if we denote by M(Σ3
0, α, β, γ) the moduli space

of flat SU(n)-valued connections on the three holed-sphere Σ3
0 for which the holonomies

around a, b, c respectively belong to O(α),O(β) and O(γ), we have an isomorphism

M(Σ3
0, α, β, γ) ≃ {(U1, U2, U3) ∈ O(α) × O(β) × O(γ), U1U2U3 = IdSU(n)}/SU(n).

As a corollary of Theorem 3.3.4, we get an expression of the volume of M(Σ3
0, α, β, γ) as

a sum of volumes of explicit polytopes.



78 CHAPTER 3. HORN PROBLEMS

Corollary 3.3.5 (Volume of flat SU(n)-connections on the sphere). Let n ⩾ 3 and con-
sider the canonical volume form on SU(n). For α, β, γ ∈ Hreg such that |α|1, |β|1, |γ|1 ∈ N,
then Vol

[
M(Σ3

0, α, β, γ)
]

̸= 0 only if
∑n
i=1 αi +

∑n
i=1 βi +

∑n
i=1 γi = n+d for some d ∈ N,

in which case

Vol
[
M(Σ3

0, α, β, γ)
]

= 2(n+1)[2](2π)(n−1)(n−2)

n!∆′(e2iπγ)∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 regular
Volg(P gα,β,γ̃),

where γ̃ = (1 − γn, . . . , 1 − γ1) and the polytopes P g
α,β,γ̃

are defined in Definition 3.3.3.

3.3.2 Enumeration of crossings in two-step puzzles

In this section, we present our results corresponding to the article [Fra24] which is the
subject of Chapter 7. The main result is Theorem 3.3.10 which counts configurations in
two-step puzzles introduced in Section 3.2.4.

Definition 3.3.6 (Triangular lattice). Let n ⩾ 1 and let ξ = e
iπ
3 . Let us denote by

Tn = {r + sξ, 0 ⩽ r + s ⩽ n} the vertices of the triangular lattice of size n and by
En = {(x, x + v) | x, x + v ∈ Tn and v ∈ {−ξ2l, 0 ⩽ l ⩽ 2}} the set of edges in Tn. The
faces of the lattice Tn are triangles which are called direct (respectively reversed) if the
corresponding vertices (x1, x2, x3) ∈ T 3

n can be labeled in such a way that x2 − x1 = (1, 0)
and x3 − x1 = ξ (respectively x3 − x1 = ξ).

Edges in En can only have three possible orientations. If x = r+ sξ ∈ Tn, we define three
coordinates (x0, x1, x2) by

x0 := n− (r + s), x1 := r and x2 := s.

Definition 3.3.7 (Edge coordinate and type). We say that an edge e = (x, x + v) is of
type l for l ∈ {0, 1, 2} when v = −ξ2l. The origin of e is x and the coordinates of e is
the triple (e0, e1, e2) = (x0, x1, x2). The height of e of type l is h(e) = el. Define also the
boundary edges of En by

∂
(n)
0 := (((n− r + 1, 0), (n− r, 0)), 1 ⩽ r ⩽ n)

∂
(n)
1 :=

(
(nξ + (r − 1)ξ, (nξ + rξ)), 1 ⩽ r ⩽ n

)
∂

(n)
2 :=

(
((r − 1)ξ, rξ), 1 ⩽ r ⩽ n

)
.

Definition 3.3.8 (Color map). Let n ⩾ 1. A color map is a map C : En → {0, 1, 3,m}
such that the boundary colors around each triangular face in the clockwise order is either
(0, 0, 0), (1, 1, 1), (1, 0, 3) or (0, 1,m) up to a cyclic rotation.

The values of a color map C on the boundary edges are denoted ∂C = (∂0C, ∂1C, ∂2C)
and are defined for l ∈ {0, 1, 2} as ∂lC = C|∂(n)

l

. We say that C has boundary condition
∂ = (∂0, ∂1, ∂2) if ∂C = ∂.
Alternatively, one can view a color map C as a tiling of Tn by the set of edge labeled tiles
of Figure 3.16 where tiles can be rotated. The last two tiles are respectively called 3 and
m lozenges in accordance with the color of their middle edge.

1 1
1

0 0
0

0 0
1

1
3 1 1

0

0
m

Figure 3.16: Possible tiles for color maps
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As there is an equal number of both 0 and 1 labels on each side of two-step puzzles, we will
consider boundary conditions ∂C ∈ {0, 1}3n having an equal number of 0 and 1 colored
edges respectively denoted by n0 and n1 so that n0 + n1 = n, see Figure 3.17 below.
Such boundary conditions correspond to those of two-step puzzles [Buc+16], presented in
Section 3.2.4, where one removed the labels 2 from the boundary 012 strings.

0 0
0

0 0
0

0 0
0

0 0

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1

1
0

00

0
1

1 1

1

3

3

3m

m

m

∂ 2
C
=
(0
, 1
, 0
, 1
, 1
) ∂

1 C
=
(1, 1, 0, 0, 1)

∂0C = (1, 0, 1, 1, 0)

Figure 3.17: A color map on E5 with boundary condition ∂C =
((1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (0, 1, 0, 1, 1)).

Definition 3.3.9 (Gash numbers). Let C : En → {0, 1, 3,m} be a color map. For any l ∈
{0, 1, 2} and edge e ∈ ∂

(n)
l denote by n(C, e) = |{e′ ∈ ∂

(n)
l : h(e′) < h(e) and C(e′) = 1}|

the number of 1 colored edges east (respectively north, south) to e if e ∈ ∂
(n)
0 (respectively

e ∈ ∂
(n)
1 , e ∈ ∂

(n)
2 ). The gash numbers of the color map C are defined for l ∈ {0, 1, 2} as

G(C, l) :=
∑

e∈∂(n)
l

:C(e)=0

n(C, e). (3.3.2)

For instance, in the color map C of Figure 3.17, one has G(C, 0) = 4, G(C, 1) = 4,
G(C, 2) = 1. The main result of our work [Fra24] is Theorem 3.3.10 which gives a formula
for the number of 3 and m colored edges in color maps which depends only on the gash
numbers. The number of m colored edges in color maps is the number of rigid lozenges in
a corresponding regular labeling which encodes equality conditions in polytopes appearing
in Theorem 3.3.4, see Chapter 7 for details on this correspondance.

Theorem 3.3.10 (Label count in color maps). Let C be a color map on En having n0,
respectively n1, edges of color 0, respectively 1, on each of its boundaries. Let m(C) and
s(C) denote respectively the number of m and 3 colored edges in C. Then,

m(C) = G(C, 0) +G(C, 1) +G(C, 2) − n0n1 (3.3.3)

and
s(C) = 2n0n1 −G(C, 0) −G(C, 1) −G(C, 2). (3.3.4)

3.4 Open questions

3.4.1 Volumes of flat connections on general surfaces

Corollary 3.3.5 provides a formula for the volume of flat SU(n)-connections on the three-
holed sphere. Such volumes are related to the Yang-Mills measure on Riemann surfaces
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in the small surface limit [For93], and it has been shown in [Wit92; MW99] that its
computation for arbitrary compact Riemann surfaces can be reduced to the case of the
three-punctured sphere by a sewing phenomenon. A similar inductive procedure is used
in [Mir07] to reduce the volume problem for the moduli space of curves to the genus zero
case. Understanding how the positive expression of Corollary 3.3.5 behaves when gluing
three-holed spheres to form more general surfaces could lead to expressions for volumes of
flat connections on general compact Riemann surfaces.

3.4.2 A two-step hive model

The work of Knutson and Tao [KT99; KT03] led to a description of Littlewood-Richardson
coefficients as the number of integral points in the hive polytope, see Theorem 3.1.21. In
addition to the puzzle rule for structure constants of the cohomology of the two-step flag
variety of [Buc+16], one could ask for a description of these structure constants as the
number of integral points in a polytope that would generalize the hive polytope of Knutson
and Tao.

3.4.3 Extension to other Lie groups

For the Hermitian version of Section 3.1, extensions to real symmetric, quaternionic Her-
mitian were considered, see [Ful00] and [CMZ19]. Further extensions were also considered
in [Par23] for noncompact reductive Lie groups and in [CM23] for compact Lie groups.
One can ask for similar extensions regarding multiplicative versions in other Lie groups G
which differ from the unitary group U(n). In particular, one could aim to derive the den-
sity for a product of permutation matrices, or orthogonal matrices. The case of matrices
in GL(n) has been studied in [KO24].
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Chapter 4

Characteristic polynomial of
Gaussian elliptic matrices

4.1 Introduction and main result

4.1.1 The model of the elliptic Ginibre Ensemble (EGE)

The random matrices that we consider in this chapter are sampled from the complex el-
liptic Ginibre Ensemble introduced by Girko in [Gir86]. This model is parametrized by
t ∈ [0, 1] and interpolates between the Ginibre Ensemble and the Gaussian Unitary En-
semble (GUE) for t = 0 and t = 1 respectively. A concise review of this model can be
found in [KS15]. Its law is the one of a random matrix given by the following construction.

Recall that a matrix sampled from the Gaussian Unitary Ensemble is a Hermitian random
matrix whose density is proportional to e−Tr(M2)/2. Consider Xn and Yn independent
random matrices sampled from the Gaussian Unitary Ensemble of size n ⩾ 1. The law of
the elliptic Ginibre Ensemble at t ∈ [0, 1] is the law of the matrix

An,t =
√

1 + t

2 Xn + i

√
1 − t

2 Yn, (4.1.1)

where i is the imaginary unit. Equivalently, An,t has a law proportional to

exp
(

− 1
1 − t2

Tr
[
M∗M − t

2(M2 + (M∗)2)
])

dM, (4.1.2)

where dM =
∏

1⩽i,j⩽n dMij is the product Lebesgue measure on the entries of the matrix,
see [ADM23, Eq. (4)]. Notice that An,t could also be defined as a centered complex Gaus-
sian matrix whose entries aij satisfy E[|aij |2] = 1, E[aijaji] = t for every i, j, and for i ̸= j
E[aij āji] = E[a2

ij ] = 0 while covariance between aij and ai′j′ are zero if {i, j} ≠ {i′, j′}.
Moreover, for i ̸= j, E[(aijaji − t)2] = t2 and E[|aijaji − t|2] = 1. Many results are known
for EGE matrices. In particular, the limiting eigenvalue distribution has been proved by
Girko to be the uniform law on the ellipse centered at the origin with half long axis 1 + t
and short axis 1 − t. We refer to [Gir86, Theorem 7] and [Som+88] for the first instances
of this result.

In the recent work [BCG22], it has been proved that the spectral radius of matrices
with i.i.d. centered entries, called Girko matrices, converges in probability to 1 under the
minimal assumption of a second moment on its entries. In order to derive this result, the

83
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authors considered the reciprocal characteristic polynomial associated to such matrices
defined by qn(z) = znpn

(
1
z

)
for z ∈ D = {y ∈ C : |y| < 1}, where pn is the characteristic

polynomial. The main result of [BCG22] is the convergence in law, for the topology of local
uniform convergence, of the sequence of functions {qn}n⩾1 to a random function which is
universal, in the sense that its expression involves only the second moment of the entries
of the matrix. Our result aims at deriving the convergence of the normalised characteristic
polynomial in the case of the EGE (4.1.1) at each t ∈ [0, 1] and at identifying the limiting
object in the conjectured universality. In particular, for t = 1 our result gives the con-
vergence of the characteristic polynomial for GUE matrices to a random analytic function.

Characteristic polynomials of random matrices have been studied extensively. For Haar
unitary matrices or, more generally, for Circular β-Ensembles (CβE), the characteristic
polynomial outside the unit disk behaves in a similar way as in Theorem 4.1.1 for t = 0
as is stated in [NPS23, Theorem 1.3]. Moreover, the characteristic polynomial inside and
outside the unit disk exhibit the same but independent limiting behavior. More interest-
ingly, the scaling limit around a point at the unit circle has been studied in [CNN17] by
showing a convergence towards a random analytic function whose zeros form a determi-
nantal point process on the real line. Limit expressions for the characteristic polynomial
of CβE matrices are furthermore related to the Gaussian multiplicative chaos and to the
theory of orthogonal polynomials on the unit circle, see [LN24]. In the case of Gaussian
β-Ensembles, approximations of the characteristic polynomial in the complex plane were
found in terms of log-correlated Gaussian fields, see [LP23]. For Haar random matrices,
asymptotics for moments of derivatives of the characteristic polynomial have also been
computed in [SW24]. They derive limits both inside the unit disk and for mesoscopic and
microscopic regimes when z approaches the unit circle. The cases of orthogonal, symplectic
and GUE random matrices have been studied in [Chh+19] where ratios of characteristic
polynomials are shown to converge to a random entire function which was constructed in
[CNN17] and related to Haar random matrices.

The study of the reciprocal characteristic polynomial for Girko matrices in [BCG22] was
partially inspired from the work [BZ20] on Toeplitz matrices. The same object was studied
for other models. The case of sparse matrix models having i.i.d. non-centered Bernoulli
entries was treated in [Cos23]. The reciprocal characteristic polynomial of such matrices
converges to a random function expressed using Poisson series [Cos23]. In [CLZ24], the
same type of convergence was obtained for sums of random uniform permutation matrices.
For a fixed number of random matrices in the sum, the limit has the same form given by
the exponential of a Poisson series, whereas for a number of terms going to infinity in a
prescribed way, the limit has the form given by the exponential of a Gaussian series as in
[BCG22]. Exponential of Poisson series were also identified to be the limit of characteristic
polynomials for permutation matrices in [Bah19a; Bah19b].

In relation to elliptic matrices, the uniform law on the ellipse can be obtained as the
asymptotic distribution of zeroes of random polynomials which are related to Weyl poly-
nomials, see [Bri+24].

The motivation from the work [BCG22] was to obtain the convergence of the spectral
radius for Girko matrices. One could ask for a study of the fluctuations around the
limit. For the Ginibre Ensemble, one has Gumbel fluctuations for the maximum modulus
around 1, see [Rid03]. The Gumbel distribution also appears as the limit fluctuation for
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the largest real part of either real or complex Ginibre matrices [Cip+22]. For the GUE,
one has Tracy-Widom fluctuations for the maximum eigenvalue around 2, see [TW02]
and references therein. In [Joh07], we may find a family of determinantal processes that
interpolates between a Poisson process with intensity e−x and the Airy process. The dis-
tribution function of its last particle interpolates between the Gumbel and Tracy-Widom
distributions, see [Joh07, Theorem 1.3]. As a two-dimensional version, [Ben10] considered
the elliptic Ginibre Ensemble and an interpolating determinantal process to prove scaling
limits for the eigenvalue point process.

4.1.2 Main result

Let n ⩾ 1 and t ∈ [0, 1]. Consider pn,t(z) = det(z− 1√
n
An,t), the characteristic polynomial

scaled by 1√
n

of a matrix An,t sampled from the elliptic Ginibre Ensemble (4.1.1). Define
fn,t : D → C as the normalised characteristic polynomial of An,t,

fn,t(z) := det
(

1 + tz2 − z√
n
An,t

)
e−ntz2

2 . (4.1.3)

We endow the space of holomorphic functions on D with the topology of uniform conver-
gence on compact sets and state our main result as follows.

Theorem 4.1.1 (Convergence of the normalised characteristic polynomial). We have the
convergence in law, for the topology of local uniform convergence,

fn,t
law−−→
n→∞

exp(−Ft)

where Ft is the Gaussian holomorphic function on D defined by

Ft(z) :=
∑
k⩾1

Xk
zk√
k

(4.1.4)

for a family (Xk)k⩾1 of independent Gaussian random variables on C satisfying

E[Xk] = 0, E[X2
k ] = tk and E[|Xk|2] = 1.

Let us give some intuition for the choice in (4.1.3). Since the empirical measure of eigen-
values of An,t converges to the uniform measure σt on the ellipse

Et =
{
x+ iy ∈ C :

(
x

1 + t

)2
+
(

y

1 − t

)2
⩽ 1

}
, (4.1.5)

to study the behavior of the characteristic polynomial pn,t on C\Et, we send this set to the
unit disk in the simplest holomorphic way, namely, by using the map gt : D\ {0} → C\ Et,

gt(z) = 1
z

+ tz.

In the case of t = 1, we should define E1 = [−2, 2] and σ1 = limt→1 σt is the semi-
circular law, which is consistent with Wigner’s semicircular law. In this case, g1 is the so-
called Joukowsky transform and, moreover, we have the simple relation gt(z) =

√
tg1(

√
tz)

whenever t ̸= 0. Under this change of variables, the characteristic polynomial pn,t is

pn,t ◦ gt(z) = det
(
gt(z) − An,t√

n

)
= 1
zn

det
(

1 + tz2 − z√
n
An,t

)
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Finally, n−1 log det
(
1 + tz2 − zn−1/2An,t

)
should converge to

∫
log(1 + tz2 − zw)dσt(w)

which is tz2/2, as seen in the proof of Lemma 4.2.14, which suggests the exponential factor
in the expression of fn,t.

Using these notations, from Theorem 4.1.1 we obtain the convergence of the normalised
characteristic polynomial p̃n,t(u) = (g−1

t (u))ne−nt(g−1
t (u))2/2pn,t(u)

p̃n,t
law−−→ exp(−Ft ◦ g−1

t )

for the topology of uniform convergence on compact sets of C \ Et. This is, in fact, equiv-
alent to Theorem 4.1.1 due to the holomorphicity of fn,t at zero. It explains the notation
“normalized characteristic polynomial” since fn,t and p̃n,t are the same functions in differ-
ent coordinate systems.

From Theorem 4.1.1, one can derive the following result given in [OR14, Theorem 2.2]
for a class of elliptic matrices that includes our Gaussian case. Nevertheless, since an
explicit density can be written for the eigenvalues in the Gaussian case, we may also use
large deviation arguments to obtain the lack of outliers.

Corollary 4.1.2 (Lack of outliers). Let C ⊂ C be a closed set disjoint from Et. Then,

Nn(C) := #
{
i ∈ [n] : λi√

n
∈ C

}
P−→

n→∞
0. (4.1.6)

Proof. Let C ⊂ C be a closed set disjoint from Et. Recall that gt(z) = 1
z + tz and consider

C̃ = g−1
t (C) which is closed in D \ {0} so that its closure K on D is compact. Then,

P[|Nn(C)| > 0] = P[ inf
z∈C

|pn,t(z)| = 0]

= P[ inf
u∈K

|fn,t(u)| = 0]

→ P[ inf
u∈K

|e−Ft(u)| = 0] = 0.

In fact, we expect an analogue of Theorem 4.1.1 to hold in a much more general
setting as conjectured in [BCG22]. The limit would only depend on some of the first four
moments of the coefficients of the random matrix as suggested in Section 4.1.3. A glimpse
of this universality can be seen, for instance, when calculating the expected value of the
characteristic polynomial. This depends only on t = E[a12a21] as explained in the proof
of the following theorem where a simple expression for its limit is stated.

Theorem 4.1.3 (Average characteristic polynomial). For each n, let An,t = (aij , 1 ⩽
i, j ⩽ n) be a random matrix such that {(aij , aji), 1 ⩽ i < j ⩽ n} are i.i.d. centered pairs
which are independent of the i.i.d. centered family {aii, 1 ⩽ i ⩽ n} with E[|aij |2] < ∞ for
all 1 ⩽ i, j ⩽ n and E[a12a21] = t ∈ [0, 1]. Then, for z uniformly in D,

lim
n→+∞

E
[

det
(

1 + tz2 − z√
n
An,t

)
e−ntz2

2

]
= 1√

1 − tz2
. (4.1.7)
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Figure 4.1: Illustration of Theorem 4.1.1. Phase portrait of the normalised characteristic
polynomial of an EGE matrix of size 250 for different values of t: 0 (top left), 0.3 (top
right), 0.6 (bottom left) and 1 (bottom right). The unit circle is represented in red.

4.1.3 Open questions and comments

Extension via matching moments

Since the way we show tightness is by controlling the second moment of fn,t and since this
second moment depends only on the first four moments of An,t, tightness of fn,t still holds
for the model described in Section 4.1.3 for coefficients (aij)i,j⩾1 whose first four moments
coincide with those of the EGE. Moreover, the proof of convergence of the coefficients of
fn,t also works in the case where the coefficients have all moments finite so that Theorem
4.1.1 holds for coefficients (aij)i,j⩾1 with all moments finite and whose first four moments
coincide with those of the EGE.

Minimal moment condition and universality

As conjectured in [BCG22], the convergence in Theorem 4.1.1 of the normalised charac-
teristic polynomial is believed to hold under the minimal moment condition

E
[
|a12a21|2

]
< ∞ (4.1.8)

on the entries (aij)i,j⩾1, which gives a condition of a fourth order moment for Wigner
matrices and second order moment for Girko matrices. The context adapted to this
conjecture is the one of elliptic random matrices [NO15, Definition 1.3]. This model was
introduced by Girko in [Gir86] and [Gir95]. A version of this model consists of the following
matrices. Consider a family (aij)i,j⩾1 of square-integrable centered random variables such
that {(aij , aji) : i < j} ∪ {aii : i ⩾ 1} is an independent family of random elements and
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whose law is invariant under any permutation of the indices or, equivalently, the law of
(aij , aji) coincides with the law of (ai′j′ , aj′i′) whenever |{i, j}| = |{i′, j′}|. If

E[|a12|2] = 1 and E[a12a21] = t,

the matrix An = (aij)1⩽i,j⩽n is said to be t-Girko. The convergence of the average eigen-
value distribution towards the uniform distribution on the ellipse (4.1.5) has been proved
under different conditions on the variables, see [NO15; OR14; Nau13]. We expect the fol-
lowing version of Theorem 4.1.1 to hold for the general t-Girko matrices described above.
Denoting τ = E[a2

12], s = E[a2
11] − t − τ and q = E[(a12a21 − t)2] − t2 − τ2, the limit of

det
(
1 + tz2 − z

An,t√
n

)
exp(−ntz2/2) is expected to be given by

√
1 − τz2e−sz2/2e−qz4/4e−

∑
k⩾1 Yk

zk√
k (4.1.9)

where (Yk)k⩾1 are independent centered complex Gaussians such that Y1 has the same
variance as a11, Y2 has the same variance as a12a21 and, for k ⩾ 3, the variance of Yk
is the sum of the k-th power of the variance of a12 and the k-th power of the covariance
of a12 and a21 or, somewhat more explicitly, E[Y 2

k ] = E[a2
12]k + E[a12a21]k = τk + tk and

E[|Yk|2] = E[|a12|2]k + E[a12a21]k = 1 + E[a12a21]k.

Matrices with entries in {0, 1}

As described above, a convergence of the reciprocal characteristic polynomial for matrices
with independent Bernoulli entries with non-zero expectation has been proved in [Cos23].
The limiting random holomorphic function can be expressed using Poisson random vari-
ables, see [Cos23, Theorem 2.3]. One could ask for an analogue of the elliptic Ginibre
Ensemble for such matrices and for the convergence of its normalised characteristic poly-
nomial.

Extension of the work [CLZ24] for Ewens distributed random permutations can be found
in [Fra25]. The convergence of traces of such random matrices were understood from the
work of Nikeghbali and Zeindler [NZ13], while tightness uses asymptotics found by Hwang
[Hwa94].

Determinantal Coulomb gases

As explained in 4.1.3, this work can be thought of as a first step towards the convergence
of the characteristic polynomial outside the support of the equilibrium measure for general
elliptic random matrices. Nevertheless, we could have followed a different path, which is to
look the Elliptic Ginibre Ensembles as a particular case of a determinantal Coulomb gas.
In this vein, it may be possible to show the convergence of the traces by adapting results
from [AHM15] and to show tightness of the characteristic polynomial outside the support
of the equilibrium measure for more general determinantal Coulomb gases by using, for
instance, the results from [AC23].

4.2 Proof of Theorem 4.1.1
From now on, given that the case t = 0 is already treated in [BCG22], we assume t ̸= 0
and omit the index t since it is considered fixed for the rest of the chapter.



4.2. PROOF OF THEOREM 4.1.1 89

As is standard, to show that {fn}n⩾1 converges we show that {fn}n⩾1 is tight and that
the coefficients in its power-series expansion around the origin converge in law. We state
this classical fact as Lemma 4.2.1 below and we refer to [BCG22, Section 4.2] for a proof.
Recall that H(D) is the space of holomorphic functions on the unit disk D endowed with
the topology of uniform convergence on compact sets.

Lemma 4.2.1 (Tightness and convergence of coefficients imply convergence of functions).
Let {hn}n⩾1 be a sequence of random elements in H(D) and denote the coefficients of hn
by (ξ(n)

k )k⩾0 so that for all z ∈ D, hn(z) =
∑
k⩾0 ξ

(n)
k zk. Suppose also that the following

conditions hold.

(a) The sequence {hn}n⩾1 is a tight sequence of random elements of H(D).

(b) There exists a sequence (ξk)k⩾0 of random variables such that, for every m ⩾ 0, the
vector (ξ(n)

0 , . . . , ξ
(n)
m ) converges in law as n → ∞ to (ξ0, . . . , ξm).

Then, h(z) =
∑
k⩾0 ξkz

k is a well-defined function in H(D) and hn converges in law
towards h in H(D) for the topology of local uniform convergence.

In Lemma 4.2.1, there are two topologies involved, namely the topology of uniform con-
vergence on compact subsets of the unit disk for the space H(D) and the weak topology,
or the convergence in law, in the probability space. The first step is to show the following
theorem.

Theorem 4.2.2 (Tightness). The sequence {fn}n⩾1 is tight.

The proof uses known properties of the elliptic Ginibre Ensemble and its relation to scaled
Hermite polynomials. In particular, it relies on the determinantal aspect of its eigenvalue
point process. A local uniform control is derived from [ADM23]. This control allows us to
derive tightness thanks to Montel’s theorem as stated in Lemma 4.2.5 below. This ensures
that Condition (a) of Lemma 4.2.1 is satisfied for {fn}n⩾1.

To guarantee Condition (b) of Lemma 4.2.1, we express the coefficients of {fn}n⩾1 us-
ing a family of polynomials that we call the modified Chebyshev polynomials.

Definition 4.2.3 (Modified Chebyshev polynomials). The modified Chebyshev polynomi-
als are the polynomials

{
Pk
}
k⩾1 satisfying the recurrence relation

Pk+1 = XPk − tPk−1, P1 = X, P2 = X2 − 2t. (4.2.1)

We may also give the modified Chebyshev polynomials more explicitly by their coefficients

α
(k)
k−2j := (−t)j k

k − j

(
k − j

j

)
(4.2.2)

so that Pk =
∑
j⩾0 α

(k)
k−2jX

k−2j or by its generating function

∑
k⩾1

Pk(w)z
k

k
= − log(1 + tz2 − zw). (4.2.3)

The latter expression can be obtained either by noticing that Pk(w) = 2
√
t
k
Tk(w/(2

√
t))

for Tk the classical Chebyshev polynomials of the first kind or by taking the deriva-
tive in z of (4.2.3), which is the rational expression (w − 2zt)(1 + tz2 − zw)−1, so that
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(
∑
k⩾0 Pk+1(w)zk)(1 + tz2 − zw) = w − 2zt which is the recurrence (4.2.1).

Then, for z ∈ D small enough using (4.2.3)

1 + tz2 −
(
An√
n

)
z = exp

−
∑
k⩾1

Pk

(
An√
n

)
zk

k

 ,
by, for instance, showing this for diagonalizable matrices and the using density of this set
of matrices. Finally, taking the determinant we obtain that, for z ∈ D small enough,

fn(z) := det
(
1 + tz2 − z√

n
An
)
e−ntz2

2 = exp

−
∑
k⩾1

U
(n)
k

zk

k

 , (4.2.4)

where
U

(n)
k := Tr

[
Pk

(
An√
n

)]
+ ntδk=2. (4.2.5)

In particular, the first m coefficients of fn can be expressed as polynomials of U (n)
0 , . . . , U

(n)
m

which are independent of n and vice versa. Thus, showing the convergence in law of the
variables (U (n)

k )k⩾1 is equivalent to showing the convergence in law of the coefficients of
fn, which is our way of characterizing the limit in Condition (b) of Lemma 4.2.1. Since it
is easier to deal with traces, we will study U

(n)
k and prove the convergence stated in the

following theorem.

Theorem 4.2.4 (Convergence of the traces of Chebyshev polynomials).

(
U

(n)
k

)
k⩾1

law−−−−−→
n→∞

(
√
kXk)k⩾1,

where (Xk)k⩾1 is a family of independent centered complex Gaussian random variables
such that E[X2

k ] = tk and E[|Xk|2] = 1.

Conclusion of the proof of Theorem 4.1.1. We use Lemma 4.2.1 with hn = fn and ξk being
the coefficients of h(z) = e−Ft(z) = exp(−

∑
k⩾1Xk

zk√
k
). Theorem 4.2.2 ensures that

Condition (a) is satisfied while Theorem 4.2.4 ensures that Condition (b) is satisfied.

4.2.1 Tightness: Proof of Theorem 4.2.2

Recall that fn : D → C is given by

fn(z) = det
(
1 + tz2 − z√

n
An
)
e−ntz2

2 .

and that the space H(D) of holomorphic functions on D is endowed with the topology of
uniform convergence on compact sets, whereas the probability space is endowed with the
weak convergence. Lemma 4.2.5 below is the stochastic version of Montel’s theorem which
reduces the proof of tightness to a control on compact sets.

Lemma 4.2.5 (Montel’s theorem). Suppose that for every compact K ⊂ D, the sequence
(||fn||K)n⩾1 is tight, where ||fn||K = maxz∈K |fn(z)|. Then, {fn}n⩾1 is tight.

Proof. It is a consequence of the classical Montel’s theorem of complex analysis. See, for
instance, [Shi12, Proposition 2.5].
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Remark 4.2.6. By the subharmonicity of |fn(z)|2, saying that (E[∥fn∥2
K ])n⩾1 is a bounded

sequence for every compact K ⊂ D is equivalent to saying that (supz∈K E[|fn(z)|2])n⩾1 is a
bounded sequence for every compact K ⊂ D. See, for instance, [Shi12, Lemma 2.6]. In the
Girko case of [BCG22], one had a remarkable orthogonality of the sub-determinants which
led to an upper bound on the desired quantity. As we no longer have this property, our
proof is based on [AV03] which exploits the integrability of the elliptic Ginibre Ensemble.

Our goal is to control E[|fn(z)|2] and, for this, we will begin by giving an explicit expression
of the second moment using Hermite polynomials.
Definition 4.2.7 (Hermite polynomials). The Hermite polynomials {Hn}n⩾0 are the
monic orthogonal polynomials with respect to the measure e−x2/2dx on R so that∫

R
Hn(x)Hm(x)e−x2

2 dx =
√

2πn!δn,m.

Recall that gt(z) = z−1 + tz.
Lemma 4.2.8 (Hermite expression of the characteristic polynomial). For n ⩾ 1 and any
z ∈ D \ {0}, one has the following expression

E[|fn(z)|2] = n!|z|2n

nn

∣∣∣e−ntz2
∣∣∣ n∑
k=0

tk

k!

∣∣∣∣Hk

(√
n

t
gt(z)

)∣∣∣∣2 . (4.2.6)

Proof. In the case of the elliptic Ginibre Ensemble given by (4.1.1), the matrix An,t has
the following density, which can be found in [ADM23, eq. (4)].

dPt(M) =
( 1
π

√
1 − t2

)n2

exp
(

− 1
1 − t2

Tr
[
MM∗ − t

2(M2 + (M∗)2)
])

dM (4.2.7)

which is associated to the weight function

wt(z) = 1
π

√
1 − t2

exp
(

− 1
1 − t2

(
|z|2 − t

2(z2 + z2)
))

= 1
π

√
1 − t2

exp
(

−
(

x2

1 + t
+ y2

1 − t

))
with x = Re(z) and y = Im(z). In order to use the main theorem of [AV03], we should
compute the orthonormal polynomials with respect to wt(z)dz. Using [ADM23, eq. (3)],
these polynomials are {Pn}n⩾0 given by

Pn(z) =
√
tn√
n!
Hn

(
z√
t

)
. (4.2.8)

For M sampled from (4.2.7) and any u, v ∈ C, we may use [AV03, eq. (2.11)] to get

E
[
det(u−M)det(v −M)

]
= n!

n∑
k=0

Pk(u)Pk(v), (4.2.9)

where the global factor n! is the square inverse of the dominant coefficient of Pn. Finally,
setting u = v = gt(z) = z−1 + tz gives

E[|fn(z)|2] = E
[∣∣∣∣e−ntz2

2

(
z√
n

)n
det

(√
n(z−1 + tz) −An,t

) ∣∣∣∣2]
= n!|z|2n

nn

∣∣∣e−ntz2
∣∣∣ n∑
k=0

tk

k!

∣∣∣∣Hk

(√
n

t
gt(z)

)∣∣∣∣2



92 CHAPTER 4. GAUSSIAN ELLIPTIC MATRICES

which is the desired expression of E[|fn,t(z)|2] in terms of Hermite polynomials.

With the help of the expression (4.2.6) and using the results from [ADM23], we will
control E[|fn(z)|2] uniformly on bounded sets. In fact, [ADM23] allows us to give an
explicit expression for the limit of E[|fn(z)|2]. Since we do not need an explicit expression,
we will only state the following.

Lemma 4.2.9 (Convergence of the second moment). There exists a continuous function
F : D \ {0} → (0,∞) such that, uniformly on compact sets,

E[|fn|2] −−−→
n→∞

F .

Since fn is holomorphic on the whole disk D, one can extend the control on any disk
Dr = {z ∈ C : |z| < r} for r ∈ (0, 1). This is written in the next proposition.

Proposition 4.2.10 (Uniform control). For every r ∈ (0, 1) there exists Cr > 0 such that

E[∥fn∥2
Dr ] ⩽ Cr for every n ⩾ 1.

Proof. By Lemma 4.2.9, we have a bound for E[|fn,t(z)|2] on compact sets of D\{0}. This
is the same as a bound for E[∥fn,t∥2

K ] for compact sets K ⊂ D \ {0} by Remark 4.2.6.
We may obtain a bound for E[∥fn,t∥2

Dr ] for r ∈ (0, 1) by using that ∥fn,t∥Dr ⩽ ∥fn,t∥∂Dr
thanks to the maximum modulus principle.

Proof of Lemma 4.2.9. Recall the function gt : D → C \ Et given by gt(z) = 1
z + tz and

define Ln : C \ Et → [0,∞) by

Ln(u) =
n−1∑
k=0

tk

k!

∣∣∣∣Hk

(√
n

t
u

)∣∣∣∣2 .
By using the contour integral representation around a small loop enclosing the origin,

Ln(u) = 1
2πi

∮
0

enFu(s)

t− s

ds√
1 − s2

, with Fu(s) = s

t

(
Re(u)2

1 + s
+ Im(u)2

1 − s

)
− log s+ log t,

the following has been proved in [ADM23, Theorem II.12, (i)] and [ADM23, Theorem
II.13, (i)] for u ∈ C \ Et and z = g−1

t (u),

Ln(u) = 1
2π

√
2π

nF ′′
u (t|z|2)

enFu(t|z|2)√
1 − t2|z|4

1
t(1 − |z|2)

(
1 +O

( 1
n

))
, (4.2.10)

where the error term is uniform on compact sets of C\ Et. Here s = t|z|2 is a critical point
of Fu which can be seen by first calculating

tF ′
u(s) = Re(u)2

1 + s
+ Im(u)2

1 − s
+ s

(
− Re(u)2

(1 + s)2 + Im(u)2

(1 − s)2

)
− t

s

= Re(u)2

(1 + s)2 + Im(u)2

(1 − s)2 − t

s

= t

s

[
Re(u)2(

1√
s/t

+ t
√
s/t
)2 + Im(u)2(

1√
s/t

− t
√
s/t
)2 − 1

]
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and then noticing that gt sends {z ∈ C : |z| = r} to
{
u ∈ C : Re(u)2

( 1
r

+tr)2 + Im(u)2

( 1
r

−tr)2 = 1
}
.

Moreover, we can find

Fu(t|z|2) = |z|2
(

Re (u)2

1 + t|z|2
+ Im (u)2

1 − t|z|2

)
− log(t|z|2) + log t

= 1 + t|z|4
(

Re (u)2

(1 + t|z|2)2 − Im (u)2

(1 − t|z|2)2

)
− log(|z|2)

= 1 + tRe(z2) − log(|z|2),

where for the second equality we have used that F ′
u(t|z|2) = 0 to simplify the calculation

and for the third equality we have used that u = z−1 + tz allows us to relate the real parts
(t|z|2 + 1)Re(z) = |z|2Re(u) and the imaginary parts (t|z|2 − 1)Im(z) = |z|2Im(u). In our
case we need to control the second moment

E[|fn(z)|2] = n!|z|2n

nn
e−ntRe(z2)

n∑
k=0

tk

k!

∣∣∣∣Hk

(√
n

t

(1
z

+ tz

))∣∣∣∣2
= n!|z|2n

nn
e−ntRe(z2)Ln+1

(√
n

n+ 1gt(z)
)
.

By (4.2.10) and Stirling’s formula, we immediately notice that

n!|z|2n

nn
e−ntRe(z2)Ln(gt(z)) −−−→

n→∞
1√

F ′′
u (t|z|2)(1 − t2|z|4)t(1 − |z|2)

.

uniformly on compact sets of D \ {0}. It is now enough to notice that the quotient
Ln+1(

√
n/(n+ 1)gt(z))/Ln(gt(z)) converges uniformly on compact sets towards a nowhere

zero function. To this end, we must compute the limit of exp((n + 1)G(
√
n/(n+ 1)u) −

nG(u)), where G(w) = Fw(t|g−1
t (w)|2). But, for u uniformly on compact sets of C \ Et,

e(n+1)G(
√

n
n+1u)−nG(u) −−−→

n→∞
eG(u)− 1

2 ⟨∇G(u),u⟩

so that the proof is complete with F(z) = eG(u)− 1
2 ⟨∇G(u),u⟩√

F ′′
u (t|z|2)(1−t2|z|4)t(1−|z|2)

, u = gt(z).

Conclusion of the proof of Theorem 4.2.2. For every compact subset K ⊂ D, Proposition
4.2.10 implies that the sequence (||fn||K)n⩾1 has its second moment uniformly bounded.
The sequence is therefore tight from which one derives the tightness of {fn}n⩾1 using
Lemma 4.2.5 and Remark 4.2.6.

4.2.2 Convergence of the coefficients: Proof of Theorem 4.2.4

We will divide the proof in three parts. First, we show that the expected value E
[
U

(n)
k

]
converge to zero. As a second step we show that the fluctuations are Gaussian. Finally,
we identify the covariance. We will deal with traces of polynomials of An. Recall that

Tr
[
Akn

]
=

∑
(i1,...,ik)∈{1,...,n}k

ai1i2ai2i3 . . . aik−1ikaiki1 .

It is convenient to think of (i1, . . . , ik) as a path of length k with values in {1, . . . , n}. We
use the notation [m] = {1, . . . ,m} which will be thought of as the abelian group Z/mZ
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when performing additions, and for ψ : [k] → [n] we denote aψ =
∏k
i=1 aψ(i)ψ(i+1). Due to

the invariance under permutations of the law of the entries in the matrix An, quantities
such as E[aψ] or E[aψaφ] are invariant under ψ 7→ T ◦ψ for any permutation T : [n] → [n],
i.e., E[aψ] = E[aT◦ψ] or E[aψaφ] = E[aT◦ψaT◦φ]. In the following, we may identify ψ and
T ◦ ψ or (ψ,φ) and (T ◦ ψ, T ◦ φ) for some purposes.

One can describe these equivalence classes by considering the partition induced by ψ
or by (ψ,φ) as follows. Let k1, . . . , kℓ be positive integers and let us use the notation
k = (k1, . . . , kℓ). First recall that the information of ℓ maps (ψj : [kj ] → [n])1⩽j⩽ℓ is
contained in the map ψ = ⊔ψj : ⊔ℓj=1[kj ] → [n]. For simplicity, we denote [k] = ⊔ℓj=1[kj ].

Definition 4.2.11 (Path pattern). Let ψ : [k] → [n]. The path pattern traced by ψ, or
the partition induced by ψ is the partition of [k] given by

πψ :=
{
ψ−1(x) : x ∈ ψ([k])

}
.

We denote by P(k) the set of path patterns, or partitions, of [k]. We use these path
patterns to write, for instance in the case of a single trace that is, ℓ = 1,

Tr
[
Akn

]
=

∑
π∈P(k)

A(n)
π , where A(n)

π :=
∑

ψ:[k]→[n]
πψ=π

aψ. (4.2.11)

Since the set P(k) of possible path patterns is finite, it will be convenient to study the
limit of A(n)

π for a given π ∈ P(k). We chose to consider path patterns because they are
convenient to count. We proceed to define the directed multigraph Gψ associated to a
map ψ = ⊔ℓj=1ψj : [k] → [n] in a more explicit way in Definition 4.2.12. The motivation
is that E[aψ] depends only on isomorphism class of the graph Gψ.

Definition 4.2.12 (Graph of ψ). Let ψ = ⊔ℓj=1ψj : [k] → [n]. The graph Gψ = (V,E, s, t)
is the directed multigraph having vertex set V = ψ([k]), edge set E = ⊔ℓj=1Ej with
Ej = {(i, i + 1) : i ∈ [kj ]}, source map s = ⊔ℓj=1sj with sj : Ej → V given by
s(i, i+1) = ψj(i) and target map t = ⊔ℓj=1tj with tj : Ej → V given by t(i, i+1) = ψj(i+1).

More concisely but equivalently for our purposes, if Ij : [kj ] → [k] are the canon-
ical inclusion maps, we may say that Gψ is the directed multigraph with vertex set
V = ψ([k]) and edge multiset {(Ij(i), Ij(i + 1)) : j ∈ [ℓ], i ∈ [kj ]}. For a directed multi-
graph G = (V,E, s, t), denote by G = (V,E) the undirected simple graph with edge set
E = {{x, y} ⊂ V : there exists e ∈ E with {s(e), t(e)} = {x, y}}. So, Gψ is the undirected
simple graph (with possible loops) induced by ψ.

Notice that the isomorphism class of Gψ depends only on the path pattern π ∈ P(k)
induced by ψ. We denote by Gπ this isomorphism class. When dealing with Gπ for pur-
poses where the quantities only depend on the path pattern, we may write Vπ and Eπ for
its set of vertices and edges viewed as Vψ and Eψ for some ψ inducing the partition π.
The same goes for Gπ. Moreover, if ψ = ⊔ℓi=1ψj and π = πψ, we can consider πj , the path
pattern induced by ψj or, what is the same, the partition induced by π via the canonical
inclusion Ij : [kj ] → [k]. It will then be convenient to see Gπi as a subgraph of Gπ and Gπi
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as a subgraph of Gπ. This suggest to consider the equivalence class of (Gψ, Gψ1 , . . . , Gψℓ)
and viewing Gπi as a subgraph of Gπ by taking representatives of this equivalence class.

We will see below in the proof of Lemma 4.2.15 and in Proposition 4.2.17 the follow-
ing behaviors for n−k/2A(n)

π . The first two cases correspond to the random part in the
limit whereas the last two cases give deterministic contributions.

1. If Gπ is unicyclic, i.e., if it contains one and only one cycle (that may be a loop),
with each edge of the cycle being traversed just once and every edge outside the
cycle being traversed once in each direction in Gπ, then n−k/2A(n)

π converges to a
centered Gaussian.

2. If Gπ is a tree where each edge is traversed twice in Gπ, once in each direction (π
is called a rooted plane tree in this case, see Definition 4.2.16), then n−k/2A(n)

π − n
converges to a non-centered Gaussian. This case can be thought of as a unicyclic
with a cycle of length two.

3. If Gπ is a tree but there is an edge traversed four times in Gπ, two in each direction,
then n−k/2A(n)

π converges to a constant. Those π can be thought of as rooted plane
trees with two vertices at distance two identified.

4. If Gπ is unicyclic but with each edge traversed two times, once in each direction,
then n−k/2A(n)

π also converges to a constant. Those π can be thought of as rooted
plane trees with two vertices at distance different from two identified.

5. All other cases converge to zero.

Figure 4.2: Graphs for which n−k/2A(n)
π has a non–trivial limit. Top left, top right, bottom

left, bottom right correspond respectively to cases 1, 2, 3 and 4 above.

Before turning to the convergence of the expectation and the fluctuations of traces, we
state a general lemma which will be used frequently.
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Lemma 4.2.13 (Even multiplicities in trees). Let ψ : [k] → [n] be such that Gψ is a tree.
Then, each edge of Gψ has an even multiplicity in Gψ with an equal number of oriented
edges in each direction.

Proof. Let e = (i, i+1) ∈ Eψ be an edge. Denote u = ψ(i) and v = ψ(i+1) its endpoints.
Since ψ traces a cycle, there exists a sequence of edges (i+ 1, i+ 2), . . . , (i+ r, i+ r + 1)
such that s((i + 1, i + 2)) = v and t((i + r, i + r + 1)) = u for some 1 ⩽ r ⩽ k − 1. Take
such r minimal. Since Gψ is a tree, one must have s((i+ r, i+ r + 1)) = v otherwise the
graph Gψ would have a cycle. Removing the edges (i, i+ 1), . . . , (i+ r, i+ r+ 1) from Gψ
shows the result by induction on |{e ∈ Eψ : {s(e), t(e)} = {u, v}}|.

Convergence of expected value

Recall that
U

(n)
k = Tr

[
Pk

(
An√
n

)]
+ ntδk=2.

as defined previously in (4.2.5). The main result of this section is Proposition 4.2.14 which
shows the convergence of E

[
U

(n)
k

]
for each k ⩾ 1.

Proposition 4.2.14 (Vanishing Chebyshev expectation). For every k ⩾ 1,

lim
n→∞

E
[
U

(n)
k

]
= 0.

The proof is based on the convergence of traces of monomials which is Lemma 4.2.15. As
for Wigner matrices, Catalan numbers Cp = 1

p+1
(2p
p

)
are involved.

Lemma 4.2.15 (Monomial expectation). Let p ⩾ 1. Then,

(i) E
[
Tr
[(

An√
n

)2p
]]

− nCpt
p −−−→
n→∞

0 and

(ii) E
[
Tr
[(

An√
n

)2p+1
]]

−−−→
n→∞

0.

We now prove Proposition 4.2.14, using the asymptotics of Lemma 4.2.15.

Proof of Proposition 4.2.14. We begin by noticing that, if σt denotes the uniform proba-
bility measure on the ellipse Et defined in (4.1.5),∫

Et
w2pdσt(w) = 1

p+ 1

(
2p
p

)
tp = Cpt

p

which can be obtained by using elliptic coordinates. Then, from Lemma 4.2.15, (i), the
asymptotic

E
[
Tr
[(

An√
n

)2p
]]

= nCpt
p + o(1) = n

∫
Et
w2pdσt(w) + o(1)

implies that

E
[
Tr
[
P

(t)
k

(
An√
n

)]]
= n

∫
Et
P

(t)
k (w)dσt(w) + o(1).

It remains to compute
∫

Et P
(t)
k (w)dσt(w). To achieve this, we define

M(z) =
∫

Et
log

(
1 + tz2 − zw

)
dσt(w)
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which is holomorphic for z ∈ D with

dk

dzk
M(z) =

∫
Et

dk

dzk
log

(
1 + tz2 − zw

)
dσt(w).

In particular, the coefficient zk of M(z) is given by

[zk]M(z) = −
∫

Et

P
(t)
k (w)
k

dσt(w).

To make a connection with classical Hermitian random matrix theory we can compute

St(z) =
∫

Et

dσt(w)
z − w

= 1
z

∞∑
p=0

(√
t

z

)2p

Cp = 1√
t
h

(
z√
t

)
,

where h(z) = z−
√
z2−4
2 is the holomorphic solution to z = h+ 1

h that goes to zero at infinity,
which we may recognize as the Cauchy-Stieltjes transform of the semi-circle distribution
(case t = 1). In particular, St(z−1 + tz) = z and we may connect the function St with M
by taking its derivative

d
dzM(z) = 1

z
+
(

− 1
z2 + t

)∫
Et

1
1
z + tz − w

dσt(w) = 1
z

+
(

− 1
z2 + t

)
St

(1
z

+ tz

)
= 1
z

+
(

− 1
z2 + t

)
z = tz.

So, since we also know that M(0) = 0, we obtain M(z) = tz2

2 , which implies that∫
Et
P

(t)
k (w)dσt(w) = 0 for k ̸= 2 while

∫
Et
P

(t)
2 (w)dσt(w) = −t.

We now turn to the proof of Lemma 4.2.15.

Proof of Lemma 4.2.15. For k ⩾ 1, write

E
[
Tr
[(

An√
n

)k]]
= n−k/2 ∑

π∈P(k)
E
[
A(n)
π

]
= n−k/2 ∑

π∈P(k)
C(n)
π απ,

with απ being the common value of E[aψ] for ψ inducing the partition π and C
(n)
π is the

number of ψ : [k] → [n] that induce π. Since the choice of ψ inducing π amounts to
choosing the image of each block of π, we find that, for n ⩾ k, C(n)

π = n|π|, where |π|
denotes the number of blocks of π and nk = n(n− 1) . . . (n− k+ 1) is the falling factorial.
Let us investigate the cases where απ ̸= 0.

As entries are centered, for απ not to vanish, every edge of Gπ has to be at least double.
Let us denote this set by Dk = {π ∈ P(k) : Gπ has no simple edges}. Since for π ∈ Dk we
have 2|Eπ| ⩽ |Eπ|, we obtain |Vπ| ⩽ |Eπ| + 1 ⩽ k

2 + 1 so that, for n ⩾ k,

E
[
Tr
[(

An√
n

)k]]
= n−k/2

⌊ k2 +1⌋∑
ℓ=1

nℓ
∑

π∈Dk,|π|=ℓ
απ.
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For odd values of k, the only possible contribution to the limit comes from ℓ = (k + 1)/2.
For this ℓ, we would have |Vπ| = (k + 1)/2 and, since |Vπ| − 1 ⩽ |Eπ| ⩽ k/2, we must
have |Eπ| = (k − 1)/2 so that Gπ is a tree. The fact that |Eπ| = (k − 1)/2 and that each
edge is at least double in Eπ tells us that there is exactly one edge that is triple in Eπ.
This would contradict the result of Lemma 4.2.13 so that there is no π ∈ Dk satisfying
|π| = (k + 1)/2. Then, for odd k the expected value goes to zero.

For even values k = 2p,

E
[
Tr
[(

An√
n

)2p]]
= n

∑
π∈D2p,|π|=p+1

απ +
[

−
(
p+ 1

2

) ∑
π∈D2p,|π|=p+1

απ +
∑

π∈D2p,|π|=p
απ

]
+O

( 1
n

)
.

For π ∈ D2p satisfying |π| = p+ 1, the graph Gπ has p edges and p+ 1 vertices so that it
is a tree and π draws a path on Gπ with exactly two edges passing through each edge in
Eπ, necessarily once in each direction according to Lemma 4.2.13. Denote by Tp the set
of these path patterns, also known as rooted plane trees. Then, απ = tp for every π ∈ Tp
so that ∑

π∈D2p,|π|=p+1
απ = |Tp|tp.

For π ∈ D2p satisfying |π| = p, we can either have |Eπ| = p or p− 1.

• If |Eπ| = p, then Gπ is a graph with p edges and p vertices so that it is a unicyclic
graph. For απ to be non-zero, the path drawn by π on Gπ has to have exactly two
edges passing in opposite directions through each edge in Eπ (its cycle can be a
loop). The value of απ in this case is E[a12a21]p = tp in the case of no loops and
E[a12a21]p−1E[a2

11] = tp−1t in the case where there is a loop which turns out to be
the same number. We denote by Np the set of all these path patterns. This case
corresponds to the graph located in the bottom–right corner of Figure 4.2.

• If |Eπ| = p − 1, then Gπ is a graph with p − 1 edges and p vertices so that it is a
tree. Since a closed path drawn on a tree should pass an even number of times by
each edge with the same number of times in each direction by Lemma 4.2.13, every
edge of Gπ should be double in Gπ except only for one edge of multiplicity four. The
value of απ in this case is E[(a12a21)2]E[a12a21]p−2 = (2t2)tp−2 = 2tp and we denote
by N ′

p the set of these path patterns. This case corresponds to the graph located in
the bottom–left corner of Figure 4.2.

We will now show that the O(1) term in the asymptotic development of traces vanishes
by showing the combinatorial equality(

p+ 1
2

)
|Tp| = |Np| + 2|N ′

p|. (4.2.12)

The idea behind (4.2.12) is that, given an element of Tp, one can choose two vertices and
identify them to obtain an element either of Np if the vertices are not at distance two or
of N ′

p if the chosen vertices are at distance two. More precisely, consider

Φ :
⊔
π∈Tp

{{a, b} ⊂ π : a ̸= b} → Np ∪ N ′
p

defined by taking π ∈ Tp and a pair of blocs a1, a2 of π = {a1, a2, a3, . . . , ap+1} to the
partition {a1 ∪ a2, a3, . . . , ap+1}. We may notice that an element of Np has a unique
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preimage by Φ. Here is a possible way to see this. Let π ∈ Np and let ψ : [k] → [n] be a
function which induces π. Consider the smallest index ℓ ∈ [k] such that:

• edges (ℓ, ℓ + 1) and (ℓ + r, ℓ + r + 1) for some r ⩾ 1 are in opposite directions and
belong to the cycle of Gπ,

• edges (ℓ+ 1, ℓ+ 2), . . . , (ℓ+ r − 1, ℓ+ r) belong to a tree component in Gπ.

Then, as Gπ has a cycle, there exists s ∈ [k] such that ψ(s) ̸= ψ(ℓ) and ψ(s+1) = ψ(ℓ+1).
In π, there is the block

{t1, . . . , tp, ℓ+ 1, ℓ+ r, s+ 1, tp+1, . . . , tq}

for some t1, . . . , tq ∈ [k] and q ⩾ 0. The preimage of π is given by splitting the above block
into two distinct blocks:

{t1, . . . , tp, ℓ+ 1, ℓ+ r} ⊔ {s+ 1, tp+1, . . . , tq}.

On the other hand, an element of N ′
p has exactly two preimages by Φ each one being

obtained by splitting blocks one of the two endpoints of the “quadruple” edge (see Figure
4.3). Then, (

p+ 1
2

)
|Tp| = |Np| + 2|N ′

p|

so that

E
[
Tr
[(

An√
n

)2p]]
= n|Tp|tp−

[(
p+ 1

2

)
|Tp|tp−|Np|tp−|N ′

p|2tp
]

+O
( 1
n

)
= nCpt

p+O
( 1
n

)
.

Convergence of fluctuations

Recall the definition A(n)
π =

∑
ψ:[k]→[n]
πψ=π

aψ from (4.2.11) and let us use the following notation.

Definition 4.2.16 (Rooted plane tree and unicyclic graph). Let k ⩾ 1 and π ∈ P(k).

• We say that π ∈ P(k) is a rooted plane tree if Gπ is a tree and each edge in Gπ is
double, once in each direction. This case corresponds to the graph located in the
top–right corner of Figure 4.2.

• We say that π ∈ P(k) is a rooted plane unicyclic graph if Gπ has a unique cycle,
with each edge in Gπ being simple if it belongs to the unique cycle and double, once
in each direction, if it does not belong to the unique cycle. This case corresponds to
the graph located in the top–left corner of Figure 4.2.

Proposition 4.2.17 (Gaussian limit process). The family(
n−k/2A(n)

π − n−k/2E
[
A(n)
π

])
π∈P(k),k⩾1

converges to a Gaussian process as n goes to infinity. Moreover, the only π that give non-
trivial limits are the rooted plane trees and the rooted plane unicyclic graphs, i.e., if π is
neither of those, the sequence n−k/2A(n)

π − n−k/2E
[
A(n)
π

]
converges to zero in law.
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Figure 4.3: A tree with a quadruple edge with the two possible ways of ungluing it to
obtain a planar tree.

Proof. Let k1, . . . , kℓ ⩾ 1 and denote k = k1 + · · · + kℓ. For each i ∈ {1, . . . , ℓ} choose
πi ∈ P(ki) and exponents si ∈ {·, ∗} with the conventions x(·) = x and x(∗) = x. Our goal
is to show that

lim
n→∞

n−k/2E
[ ℓ∏
i=1

(Aπi − E[Aπi ])(si)
]

= E
[ ℓ∏
i=1

Y
(si)
i

]

where (Yi)1⩽i⩽ℓ is a Gaussian vector on Cℓ. Let us write

n−k/2E
[ ℓ∏
i=1

(Aπi − E[Aπi ])(si)
]

= n−k/2 ∑
ψ:[k]→[n]
πψj=πj

E
[ ℓ∏
j=1

(aψj − E[aψj ])(sj)
]
,

where we recall that [k] = ⊔ℓj=1[kj ] and ψ = ⊔ℓj=1ψj with ψj : [kj ] → [n].
Since E[

∏ℓ
j=1(aψj − E[aψj ])(sj)] depends only on the partition induced by ψ, we can write

∑
ψ:[k]→[n]
πψj=πj

E
[ ℓ∏
j=1

(aψj − E[aψj ])(sj)
]

=
∑

τ∈P(k)
τj=πj

C(n)
τ βτ

with the following notation. The partition τj ∈ P(kj) is the one induced by τ via the
canonical inclusion Ii : [kj ] → [k], i.e., the part of the path pattern traced by the j-th
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path, βτ = E[
∏ℓ
j=1(aψj − E[aψj ])(sj)] for any ψ inducing τ and C

(n)
τ is the cardinal of

{ψ : [k] → [n] : ψ induces τ} which equals n|τ | = n(n− 1) . . . (n− |τ | + 1) if n ⩾ k.

The question now reduces to understand that n−k/2C
(n)
τ has a limit if βτ ̸= 0 and to

understand for which of those τ the limit is not zero. This is the purpose of Lemmas
4.2.18 and 4.2.19 that we state and prove now. The end of the proof of Proposition 4.2.17
will follow afterwards.

Lemma 4.2.18. If βτ ̸= 0 then each edge of Gτ is at least double in Gτ and for each
i ∈ {1, . . . , ℓ} there is j ∈ {1, . . . , ℓ} different from i such that Gτi and Gτj share an edge.

Proof. Let ψ : [k] → [n] which induces τ . If Gψ has a simple edge then there is a unique
i ∈ {1, . . . , ℓ} such that the edge (r, r + 1) ∈ Ei of Gψi for some r ∈ [ki] is simple. In that
case E[aψi ] = 0 since Gψi has a simple edge and since aψi(r),ψi(r+1) is centered,

βτ = E
[ ℓ∏
j=1

(aψj − E[aψj ])(sj)
]

= E
[
a

(si)
ψi(r),ψi(r+1)

]
E
[∏
j ̸=i

(aψj − E[aψj ])(sj)
]

= 0.

Let i ∈ {1, . . . , ℓ}. If there is no index j ∈ {1, . . . , ℓ} different from i such that Gτi and Gτj
share an edge, the random variable (aψi −E[aψi ])(si) would be independent of the product∏
j ̸=i(aψj − E[aψj ])(sj) so that, since (aψi − E[aψi ])(si) is centered, βτ would be zero.

Recall that k = k1 + · · · + kℓ.

Lemma 4.2.19. Suppose that βτ ̸= 0. Then, |τ | ⩽ k/2. Moreover, if some connected
component of Gτ involves three or more Gτi, then the strict inequality |τ | < k/2 holds.

Proof. We will actually show this lemma under the conclusions of Lemma 4.2.18.

Recall that |τ | counts the number of vertices in Gτ so that we want to show that |Vτ | ⩽ k/2.
A connected component of Gτ is formed by some Gτi1 , . . . , Gτis so that it is enough to
prove this inequality for τ restricted to [ki1 ] ⊔ · · · ⊔ [kis ]. In other words, we may assume
without loss of generality that Gτ is connected.

Since each edge is at least double we have that |Eτ | ⩽ k/2. The inequality |Vτ | ⩽ |Eτ | + 1
tells us that |Vτ | ⩽ k/2+1 and we need to understand why |Vτ | cannot be in (k/2, k/2+1].

– If k is even and |Vτ | = k/2 + 1 then |Eτ | = k/2 so that Gτ is a tree and each edge is
double. Since τi traces a closed path in this tree, it must traverse each edge twice,
once in each direction by Lemma 4.2.13. This implies that Gτi does not share edges
with any other Gτj because each edge of Gτ is double which contradicts βτ ̸= 0 by
Lemma 4.2.18.

– If k is odd and |Vτ | = k/2 + 1/2 then |Eτ | = k/2 − 1/2 so that again Gτ is a tree.
But, using Lemma 4.2.13, a closed path in a tree contains an even number of edges
so that each ki has to be even which contradicts that k = k1 + · · · + kℓ is odd.

If |τ | = k/2 then |E| can be either k/2 or k/2 − 1. The first case happens when Gτ is
unicyclic and the second case happens when it is a tree. We need to see why in this case
ℓ must be 2, i.e., why there can be only two Gτi forming Gτ .
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– Suppose that |τ | = |E| = k/2 so that Gτ is unicyclic. Then, each τi has to traverse
each edge of the unique cycle at least once because, if not, τi would draw a path on
a tree (Gτ with that edge removed) so that each edge would be double and, since
each edge of Gτ is precisely double, Gτi would not share edges with the other Gτj .
But there cannot be three Gτi passing through the unique cycle because each edge
is double so that there has to be exactly two Gτi . In particular, Gτi is also unicyclic
and Gτ is made of Gτi and Gτj by gluing them along the unique cycle because, if an
edge is traversed at least once by τi then it is traversed exactly twice, once in each
direction (if not, we would be able to form a cycle passing through this edge).

– Suppose that |τ | = |E| + 1 = k/2 so that Gτ is a tree. In this case, this implies in
particular, that Gτi is a tree with each of its edges traversed twice by τi, once in each
direction. Take τi and τj for i ̸= j such that Gτi and Gτj share an edge. This implies
that this shared edge is at least “quadruple”. Since |E| = k/2 − 1, |E| = k/2 and
each edge is at least double we must have that every edge of Gτ is precisely double
except for the “quadruple edge. This implies that any other Gτp cannot share an
edge with any other Gτq which cannot happen by Lemma 4.2.18. So, Gτ is made of
two trees Gτi and Gτj by gluing them along an edge (which may be thought of as a
degenerate cycle).

We turn back to the proof of Proposition 4.2.17. Lemmas 4.2.18 and 4.2.19 already
show the Gaussian behavior. Indeed, let us denote by P2(π1, . . . , πℓ) the set of partitions
τ ∈ P(k) such that τi = πi for every i ∈ [ℓ] and such that βτ ̸= 0, i.e that satisfies
the conditions of Lemmas 4.2.18 and 4.2.19. The proof of Lemma 4.2.19 showed that
connected components of Gτ come from two τi’s which are paired according to a common
cycle or via an edge which will be quadruple if both are rooted plane trees. Then, by
Lemma 4.2.19, there exists a pair partition that we denote Πτ of [ℓ] where a block is {i, j}
if some connected component of Gτ is formed by Gτi and Gτj . In particular, ℓ has to be
even for P2(π1, . . . , πℓ) not to be empty. In all cases,

lim
n→∞

n−k/2E
[ ℓ∏
i=1

(Aπi − E[Aπi ])(si)
]

=
∑

τ∈P2(π1,...,πℓ)
βτ

which would be zero if ℓ is odd. Denote by P2(ℓ) the set of pair partitions of [ℓ]. For each
τ ∈ P2(π1, . . . , πℓ) consider the family of partitions (τa)a∈Πτ , where if a = {i, j} is a block
of Πτ , the partition τa ∈ P2(πi, πj) is the one induced on [ki] ⊔ [kj ] by τ . We identify
P2(πi, πj) ≃ P2(πj , πi) so that the order is not important. The assignment τ 7→ (τa)a∈Πτ
defines a bijection

P2(π1, . . . , πℓ) →
⊔

Π∈P2(ℓ)

∏
{i,j}∈Π

P2(πi, πj).

Notice that, since the components of Gτ are independent, βτ =
∏
a∈Πτ βτa where βτa =
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E[(Aτi − E[Aτi ])(si)(Aτj − E[Aτj ])(sj)] whenever a = {i, j}. Then, we may write∑
τ∈P2(π1,...,πℓ)

βτ =
∑

Π∈P2(ℓ)

∑
τ :Πτ=Π

βτ

=
∑

Π∈P2(ℓ)

∑
τ :Πτ=Π

∏
a∈Π

βτa

=
∑

Π∈P2(ℓ)

∏
{i,j}∈Π

 ∑
τ∈P2(πi,πj)

βτ

 .
where we have used the bijection described above together with the distributive property.
By Isserlis–Wick’s theorem, we know that

E
[ ℓ∏
i=1

Y
(si)
i

]
=

∑
Π∈P2(ℓ)

∏
{i,j}∈Π

∑
τ∈P2(πi,πj)

βτ (4.2.13)

if (Y1, . . . , Yℓ) is a centered Gaussian vector with covariances

E
[
Y

(si)
i Y

(sj)
j

]
=

∑
τ∈P(πi,πj)

βτ .

Since the right-hand side of (4.2.13) is the limit of covariances, we have shown that
(n−k/2A(n)

π −n−k/2E[A(n)
π ])π∈P(k),k⩾1 converges to a Gaussian family. In fact, in the proof

of Lemma 4.2.19 we already found what graphs will contribute and how.

Lemma 4.2.20 (Contributing graphs). If P2(πi, πj) is non-empty then both πi and πj are
either plane rooted trees or they are plane rooted unicyclic graphs whose cycles have the
same length.

Proof. The proof is contained in the proof of Lemma 4.2.19.

This concludes the proof of Proposition 4.2.17. Figure 4.4 gives an example of contributions
described by Lemma 4.2.20.

Remark 4.2.21. A possible way to prove Theorem 4.2.4 would be to compute explicitly
the limiting Gaussian family corresponding to traces of powers. These Gaussians variables
would not be independent. One would have to show that their covariance is diagonalised
by the Chebyshev polynomials thereby implying that the variables

(
U

(n)
k

)
k⩾1

are inde-
pendent. However, in Section 4.2.2, we chose a different approach which provides more
intuition as to why the Chebyshev polynomials are the right family for diagonalizing the
covariance.

Variance identification

Proof of Theorem 4.2.4. Let us denote by C(n)
k the set of ψ : [k] → [n] such that the

associated graph πψ is a rooted plane unicyclic graph or a rooted plane tree. For such ψ,
let denote c(ψ) the set of edges in Eψ that are single, i.e, which form the cycle of Gψ.
Note that this set is empty if πψ is a rooted plane tree. Likewise, denote by ℓ(ψ) the set
of edges in Eψ incident to a vertex of degree one in Gψ, that is, edges which are leaves in
trees anchored on the cycle of Gψ. Recall that
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Figure 4.4: Two elements of P2(π1, π2) where π1, π2 are both rooted unicyclic graphs (left)
or both plane rooted trees (right).

(
n−k/2Tr

[
Akn

]
− n−k/2E

[
Tr
[
Akn

]] )
− n−k/2 ∑

ψ∈C(n)
k

(
aψ − E[aψ]

) law−−−→
n→∞

0.

The idea is to regularize these terms and to consider instead, for any ψ ∈ C(n)
k ,

âψ :=
∏

e∈c(ψ)
ae

∏
e∈ℓ(ψ)

(aeae∗ − t)

where for an edge e = (i, i + 1), ae = aψ(i),ψ(i+1) and e∗ = (i + 1, i). A nice property of
this term is that it has zero expected value even if πψ is a rooted plane tree. Consider the
sum

:Tr(Akn): :=
∑

ψ∈C(n)
k

âψ.

By the same arguments as in Section 4.2.2, we know that (:Tr(Akn) :)k⩾1 converges to a
Gaussian process as n → ∞. For a rooted plane unicyclic graph or a rooted plane tree π,
we define

Â(n)
π :=

∑
ψ:[k]→[n]
πψ=π

âψ.

In the same way, (Â(n)
π )π converges to a Gaussian process indexed by rooted plane unicyclic

graphs and rooted plane trees. Let us check that for any pair of rooted plane unicyclic
graphs or trees π1 and π2,

lim
n→∞

E
[
Â(n)
π1 Â(n)

π2

]
= 0 and lim

n→∞
E
[
Â(n)
π1 Â(n)

π2

]
= 0

whenever one of them is not a cycle, that is, such that either c(ψi) ̸= Eψ1 or c(ψ2) ̸= Eψ2

for any ψ1, ψ2 inducing π1 and π2 respectively. Since the leaves are centered in Â(n)
π1 and
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Â(n)
π2 , the only possible non-vanishing contributions to the variance arise when π1 and

π2 that either both have no leaves or share the same leaves. The case where both have
no leaves corresponds exactly to the desired condition mentioned above. Recall that the
connected component must consist of double edges so that Gπ has either a single cycle,
or a quadruple edge in which case Gπ is a tree. If π1 and π2 have a common leaf, this
would result in a quadruple edge in Gπ. Therefore, both Gπ1 and Gπ2 are plane rooted
trees and the condition of having the same leaves implies that both Gπ1 and Gπ2 consist
of only one edge. The latter case corresponds to two cycles of length two. Therefore, the
variances that will not have a zero limit are those between two cycles of the same length
so that, if ck denotes the partition {{1}, . . . , {k}}, we have in law,

lim
n→∞

(
n−k/2 :Tr(Akn): − n−k/2Âck

)
= 0.

If Yk denotes the limit in law of n−k/2Âck , we would have, for k ⩾ 3,

E[(Yk)2] = kE[a12a21]k = ktk and E[|Yk|2] = kE[|a12|2]k = k.

For k = 2, we have E[(Y2)2] = 2E[(a12a21 − t)2] = 2t2 and E[(Y2)2] = 2E[|a12a21 − t|2] = 2
and, for k = 1, E[(Y1)2] = E[a2

11] = t2 and E[|Y1|2] = E[|a11|2] = 1.

It now remains to express the normalized traces :Tr(Akn): in terms of the traces of Cheby-
shev polynomials, that is, in terms of the variables U (n)

k . For simplicity, we forget the
initial instant of ψ, i.e., we consider the equivalence relation generated by ψ ∼ ψ ◦ σ with
σ : [k] → [k] given by σ(i) = i+ 1 and denote by D(n)

k the quotient of C(n)
k by this equiv-

alence relation. Notice that aη and âη are well-defined for η ∈ D(n)
k and that, since each

equivalence class contains k elements,

:Tr(Akn): =
∑

ψ∈C(n)
k

âψ = k
∑

η∈D(n)
k

âη.

We may write the sum of âη over η ∈ D(n)
k as a weighted sum of aθ −E[aθ] with θ ∈ D(n)

k−2j
for j ⩾ 0 since each time we erase a leave we are erasing two edges. Fix j ⩾ 0 and let
us find the weight of θ ∈ D(n)

k−2j . To construct an element from D(n)
k by adding leaves to

θ, we would have to add j of those leaves. We should choose j instants (with possible
repetitions) among the k− 2j instants in the path θ to introduce these leaves. This would
give us

(k−2j+j−1
j

)
=
(k−j−1

j

)
choices. Then, we would have (n − (k − 2j))j ∼ nj choices

for the vertices associated to the leaves. This means that the weight of aθ − E[aθ] is(
k − j − 1

j

)
(n− (k − 2j))j(−t)j .

Note that the case where k− 2j = 0 is not relevant because our variables âψ are centered.
We can write

n−k/2 ∑
ψ∈C(n)

k

âψ = n−k/2k
∑

0⩽j⩽k/2

(
k − j − 1

j

)
(−t)j(n− (k − 2j))j

∑
θ∈D(n)

k−2j

(aθ − E[aθ])

=
∑

0⩽j⩽k/2

k

k − 2j

(
k − j − 1

j

)
(−t)j (n− (k − 2j))j

nj

(
n−(k−2j)/2 ∑

ψ∈C(n)
k−2j

(aψ − E[aψ])
)
.



106 CHAPTER 4. GAUSSIAN ELLIPTIC MATRICES

Notice then that whenever k − 2j ̸= 0,

k

k − 2j

(
k − j − 1

j

)
(−t)j = k

k − j

(
k − j

j

)
(−t)j = α

(k)
k−2j

where
(
α

(k)
k−2j

)
j

are the coefficients of Pk given in (4.2.2). Since (n−(k−2j))j
nj

converges to

1, the limit of n−k/2∑
ψ∈C(n)

k

âψ coincides with the limit of

Tr
(
Pk
(An√

n

))
− E

[
Tr
(
Pk
(An√

n

))]
= U

(n)
k − E

[
U

(n)
k

]
.

More precisely, their difference goes to zero in law. Since E
[
U

(n)
k

]
goes to zero by Propo-

sition 4.2.14, we obtain that

lim
n→∞

(U (n)
k − n−k/2Âck)k⩾1 = 0

which completes the proof of Theorem 4.2.4.

4.3 Proof of Theorem 4.1.3
The goal of this section is to prove Theorem 4.1.3. Note that from Proposition 4.3.1, one
can derive the result of Theorem 4.1.3 by using uniform asymptotics of Hermite polyno-
mials. In particular, this approach does not require the use of Proposition 4.2.10. Since
this alternative method involves more intricate computations, we opted for the approach
presented in this section.

For I ⊂ [n], we denote by AI the submatrix of An,t obtained by taking rows and columns
with index in I. Since one can write

det
(

(1 + tz2) − z
An,t√
n

)
=

n∑
k=0

(1 + tz2)n−k(−z/
√
n)kS(n)

k (4.3.1)

where S(n)
k =

∑
I⊂[n]:|I|=k det(AI) is coefficient of wk in the polynomial det(1 +wA). The

expectation E[fn(z)] depends only on t and be written in terms of Hermite polynomials,
see Proposition 4.3.1 below.

Recall that if (Xn)n⩾1 is a uniformly integrable sequence of random variables which con-
verge in law to X, then limn→∞ E[Xn] = E[X]. Since the second order moment of {fn}n⩾1
is uniformly bounded on compact subsets by Proposition 4.2.10, the family is uniformly
integrable and therefore for z ∈ D,

lim
n→∞

E[fn(z)] = E
[
e−Ft(z)

]
(4.3.2)

with
Ft(z) =

∑
k⩾1

Xk
zk√
k

for a family (Xk)k⩾1 of independent Gaussian random variables satisfying E[Xk] = 0,
E[X2

k ] = tk and E[|Xk|2] = 1. Since |E[fn(z)]| ⩽
√
E[|fn(z)|2] and since E[|fn(z)|2] is



4.3. PROOF OF THEOREM 4.1.3 107

uniformly bounded on compact sets by Proposition 4.2.10, E[fn(z)] is a precompact se-
quence of holomorphic functions by Montel’s theorem. This implies that the convergence
in (4.3.2) is uniform on compact sets. It is enough to compute

E
[
e−Ft(z)

]
= E

[
e

−
∑

k⩾1 Xk
zk√
k

]
= e

1
2
∑

k⩾1 E[X2
k ] z

2k
k = e

1
2
∑

k⩾1 t
k z2k
k =

√
1 − tz2

which completes the proof of Theorem 4.1.3.

For the sake of completeness, we provide an explicit expression of the expectation E[fn(z)]
in Proposition 4.3.1.

Proposition 4.3.1 (Mean characteristic polynomial). Let An,t be a random matrix as in
Theorem 4.1.3. Then, for every z ∈ D,

E[fn,t(z)] = e−ntz2/2
(√

t

n
z

)n
Hn

(√
n

t

(1
z

+ tz

))
. (4.3.3)

Remark 4.3.2 (Universality of the expectation). Notice that the expectations involved in
E[fn(z)] only depend on E[a1,2a2,1] = t. Therefore, E[fn,t(z)] can be obtained by consider-
ing EGE matrices for the same t and is related to the kernel when we see the eigenvalues
as a determinantal process. Namely, if (Z1, . . . , Zn) ∼ 1

Z
∏n
i<j |zj − zi|2dµ⊗n(z1, . . . , zn),

then
E
[
n∏
i=1

(z − Zi)
]

= pn(z),

where pn is the monic orthogonal polynomial of degree n with respect to µ.

For convenience of the reader, we prefer to give a more direct proof of Proposition 4.3.1.
Recall that S(n)

k =
∑
I⊂[n]:|I|=k det(AI) are the coefficients in (4.3.1).

Lemma 4.3.3 (Mean coefficient). For 1 ⩽ k ⩽ n,

E
[
S

(n)
k

]
=
{

0 if k ∈ 2N + 1(n
k

)
(k − 1)!!(−t)k/2 if k ∈ 2N.

(4.3.4)

where (l)!! = l · (l − 2) . . . 3 · 1 for l ∈ 2N + 1.

Proof. Let I ⊂ [n] such that |I| = k. Then,

E[det(AI)] =
∑
σ

(−1)σE
∏
i∈I

ai,σ(i).

where the sum is over permutations of I. The expectation is non-zero if and only if
σ is a product of transpositions as each term is centered and (ai,j , aj,i) is independent of
{(al,k, ak,l), (k, l) ̸= (i, j)}. Thus, I has to be of even cardinal so that k = 2l for some l ⩾ 1.
There are (2l− 1)!! = (2l− 1)(2l− 3) . . . 1 permutations that are product of transpositions
since they are in bijection with pairings of 2l elements. Each such permutation gives a
contribution of (E[a1,2a2,1])l = tl and has a signature of (−1)l. Therefore,

E[det(AI)] = (2l − 1)!!(−t)l,

which only depends on the cardinal of I. Thus,

E
[
S

(n)
2l

]
=
(
n

2l

)
(2l − 1)!!(−t)l
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Proof of Proposition 4.3.1. Let z ∈ D. Using (4.3.1), Lemma 4.3.3 and (2k−1)!!
(2k)! = 1

2kk! ,

E[fn,t(z)] = e−ntz2/2
⌊n/2⌋∑
k=0

(
n

2k

)
(1 + tz2)n−2k z

2k

nk
(2k − 1)!!(−t)k

= e−ntz2/2
(√

t

n
z

)n ⌊n/2⌋∑
k=0

(−1)kn!
2k(n− 2k)!k!

(√
n

t

(1
z

+ tz

))n−2k

= e−ntz2/2
(√

t

n
z

)n
Hn

(√
n

t

(1
z

+ tz

))
.



Chapter 5

Characteristic polynomial of
Ewens random permutations

This chapter presents our results on the convergence of the characteristic polynomial in the
context of generalized Ewens distributed permutations, which encompasses the uniform
case of Theorem 2.2.7 of Coste, Lambert and Zhu [CLZ24] presented in Section 2.2.2
together with Ewens random permutations (1.1.12). The generalized Ewens distribution
was introduced by Nikeghbali and Zeindler [NZ13] as a generalization of the classical
Ewens distribution (1.1.12) by assigning different weights to each cycle lengths. Following
the results of Chhaibi, Najnudel and Nikeghbali [CNN17] on the characteristic polynomial
of Haar unitary matrices, Bahier [Bah19a] showed the convergence of the characteristic
polynomial of Ewens permutation matrices at a microscopic scale around one and near
irrational angles on the unit circle. Here, we consider the characteristic polynomial in a
different regime namely inside the open unit disk where there are no eigenvalues.

5.1 The generalized Ewens measure

For n ⩾ 1, we denote by Sn the group of permutations of {1, . . . , n}.

Definition 5.1.1 (Generalized Ewens measure, [NZ13]). Let Θ = (θk)k⩾1 be a sequence
of positive real numbers. For n ⩾ 1, the generalized Ewens measure is the probability
measure dPΘ

n on Sn defined by

dPΘ
n [σ] = 1

n!hΘ
n

n∏
k=1

θ
Ck(σ)
k (5.1.1)

where for a permutation σ ∈ Sn and k ⩾ 1, Ck(σ) is the number of cycles of σ with length
k.

The Ewens measure corresponds to the case where the sequence Θ is constant equal to
θ > 0 in which case hΘ

n =
(θ+n−1

n

)
. The uniform measure on Sn corresponds to the Ewens

distribution with parameter θ = 1. From the sequence Θ = (θk)k⩾1, one defines as in
[NZ13],

gΘ(z) =
∑
k⩾1

θk
k
zk and GΘ(z) = exp(gΘ(z)) (5.1.2)

109
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as formal power series. For the Ewens measure of parameter θ, gΘ and GΘ are holomorphic
in D with gΘ(z) = −θ log(1 − z) and GΘ(z) = (1 − z)−θ. By [Hug+13, Lemma 2.6], one
has

GΘ(z) =
∑
n⩾0

hΘ
n z

n,

where hΘ
n are the constants in the definition of the generalized Ewens distribution (5.1.1).

In this chapter, we consider characteristic polynomials of random matrices associated
to random permutations sampled from the generalized Ewens distribution. Since permu-
tations σ ∈ Sn can be viewed as permutation matrices of size n, we say that An follows the
generalized Ewens distribution if it is the matrix obtained from a permutation σ sampled
from (5.1.1). The characteristic polynomial pn(z) = det(1 − zA) of a permutation matrix
A can be expressed as

pn(z) =
n∏
k=1

(1 − zk)C
(n)
k , (5.1.3)

where C(n)
k , 1 ⩽ k ⩽ n are the cycle lengths of the associated random permutation. Note

that the eigenvalues of An are explicit and are given by roots of unity located on the unit
circle. Our result aims at showing the convergence of (pn)n⩾1 as a sequence of random
holomorphic functions defined on the unit disk. As in [BCG22; FG23; Cos23] and [CLZ24],
we consider the limit of the characteristic polynomial in the region outside of the eigenvalue
support, namely pn(z) = zn det(z−1 − An) so that for z ∈ D, z−1 lies outside of the unit
circle and det(z−1 −An) does not vanish.

5.2 Convergence of the characteristic polynomial

5.2.1 Main result

For n ⩾ 1 and Θ = (θk)k⩾1 as above, we consider An the random matrix associated to a
permutation σ sampled from (5.1.1). In this chapter, we consider characteristic polynomial

pn(z) = det(1 − zAn) (5.2.1)

inside the unit disk z ∈ D = {x ∈ C : |x| < 1}. Let us denote by H(D) the space
of holomorphic functions on D endowed with the topology of convergence on compact
subsets of D. Our main result is the convergence of pn as a random variable in H(D) in
law towards a limit function F ∈ H(D). The above convergence holds for parameters Θ
such that the generating series gΘ satisfies some conditions that we now define as Definition
5.2.1 which is an adaptation of a definition given in Section 5.2.1 of [Hwa94]. One can
also find it as Definition 2.9 in [Hug+13] or Definition 2.8 in [NZ13].

Definition 5.2.1 (Logarithmic class function). A function g is said to be in F (r, γ,K)
for r > 0, γ ⩾ 0 and K ∈ C if

• There exists R > r and ϕ ∈ (0, π/2) such that g is holomorphic in ∆(r,R, ϕ) \ {r}
where ∆(r,R, ϕ) = {z ∈ C : |z| ⩽ R, | arg(z − r)| ⩾ ϕ}.

• As z → r, g(z) = −γ log(1 − z/r) +K +O(z − r).

In the case of the Ewens measure of parameter θ, we have gΘ(z) = −θ log(1 − z) so that
gΘ ∈ F (1, θ, 0). Note that if γ > 0, the parameter r is unique.
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Our main result is Theorem 5.2.2 which gives the convergence of the characteristic poly-
nomial towards a limit function for sequences Θ such that g satisfies the conditions of
Definition 5.2.1.

Theorem 5.2.2 (Convergence of the characteristic polynomial). Let Θ = (θk)k⩾1 be a
sequence of positive real numbers such that gΘ ∈ F (r, γ,K) for r > 0 and γ > 0. We have
the convergence in law, for the topology of local uniform convergence in D

pn
law−−→
n→∞

F (5.2.2)

where

F (z) = exp

−
∑
k⩾1

zk

k
Xk

 , Xk =
∑
ℓ|k

ℓYℓ, (5.2.3)

with (Yℓ)ℓ⩾1 independent Poisson random variables with parameter θℓ
ℓ r

ℓ.

The previous theorem gives in particular the convergence of the characteristic polynomial
for Ewens permutation matrices. Indeed, for constant θ, the function gΘ ∈ F (1, θ, 0) so
that pn converges towards the limit function as conjectured in [CLZ24].

Figure 5.1: Phase portrait of pn for an Ewens matrix of size n = 10000 with parameter
θ = 100 (left) and phase portrait of the limit function with same parameter (right). The
unit circle is represented in red.

Remark 5.2.3 (Outside region). Theorem 5.2.2 deals with the convergence in law for
z ∈ D so that pn(z) = det(1 − zAn) does not vanish as eigenvalues of An are located on
the unit circle. One can extend the previous to values of pn(z) for z in C\D = {z ∈ C : |z| >
1} under suitable normalization. Indeed, notice that the generalized Ewens distribution
(5.1.1) is invariant under inversion, that is, if σ has distribution (5.1.1) then so does σ−1

as they both have the same cycle structure. Thus, An = A−1
n in law. Furthermore, for

z ∈ C \ D, det(1 − zAn) = (−z)n det(An) det(1 − z−1A−1
n ) so that if p̃n(z) = pn(z)

(−z)n det(An)
and ι(z) = 1

z , Theorem 5.2.2, gives the convergence in law on C \ D of p̃n to F ◦ ι.

5.2.2 Method of proof

The proof of Theorem 5.2.2 relies on the same structure as in [BCG22] and [FG23], which
is recalled in Lemma 5.3.1. This lemma corresponds to Lemma 4.2.1 from the study of
Gaussian elliptic matrices and we restate it below for clarity. It is a consequence of the
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general fact stated in [Shi12] that a tight sequence of holomorphic functions in H(D) whose
coefficients convergence in law for finite dimensional distributions converges to a random
analytic function. We first show that the sequence (pn)n⩾1 is tight which is Theorem
5.3.2 proved in section 5.4. The question of tightness for the Ewens model was raised in
[CLZ24]. Here, tightness is archieved by a uniform control of the second moment of pn.
This control relies on results from Hwang [Hwa94] on singularity analysis for generating
functions. The finite dimensional convergence of coefficients is obtained by showing the
convergence of traces of powers, see the discussion above Theorem 5.3.3. The convergence
of traces for generalized Ewens matrices was done in [Hug+13] and [NZ13]. We recall their
results in Section 5.5 where Theorem 5.3.3 is proved. From these two results, one is able
to derive the convergence of pn towards a random analytic function F . The fact that F
coincides with the exponential of a Poisson series is the purpose of Theorem 5.3.4 proved
in section 5.6. In the rest of the chapter, we assume that Θ is fixed and we write g and G
for the functions defined in (5.1.2) for notation convenience.

5.3 Proof of the convergence
Recall that H(D) denotes the space of analytic functions on D endowed with the topology
of local uniform convergence. In order to show the convergence in law of a sequence
(fn)n⩾1 in H(D), we rely on Lemma 5.3.1 which is close to Proposition 2.5 in [Shi12]. It
is also stated as Lemma 3.2 in [BCG22] and proved therein.

Lemma 5.3.1 (Tightness and convergence of coefficients imply convergence of functions).
Let {fn}n⩾1 be a sequence of random elements in H(D) and denote the coefficients of fn
by (ξ(n)

k )k⩾0 so that for all z ∈ D, fn(z) =
∑
k⩾0 ξ

(n)
k zk. Suppose also that the following

conditions hold.

(a) The sequence {fn}n⩾1 is a tight sequence of random elements of H(D).

(b) There exists a sequence (ξk)k⩾0 of random variables such that, for every m ⩾ 0, the
vector (ξ(n)

0 , . . . , ξ
(n)
m ) converges in law as n → ∞ to (ξ0, . . . , ξm).

Then, f(z) =
∑
k⩾0 ξkz

k is a well-defined function in H(D) and fn converges in law
towards f in H(D) for the topology of local uniform convergence.

In Lemma 5.3.1, there are two topologies involved, namely the topology of uniform con-
vergence on compact subsets of the unit disk for the space H(D) and the weak topology,
or the convergence in law, in the probability space. We thus need to show that the se-
quence (pn)n⩾1 is tight and then study the limit of finite dimensional distributions for its
coefficients. The first part is given by Theorem 5.3.2 which is proved in section 5.4.

Theorem 5.3.2 (Tightness). The sequence (pn)n⩾1 is tight in H(D).

It remains to study the coefficients of pn. Let us write

pn(z) = 1 +
n∑
k=1

(−z)k∆k(An)

where ∆k(A) is the coefficient of zk in det(1 + zA). Coefficients ∆k(An) can be expressed
via traces

(
Tr
[
Aℓn

])
1⩽ℓ⩽k

so that

∆k(An) = 1
k!Pk

(
Tr
[
A1
n

]
, . . . ,Tr

[
Akn

])
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where the polynomials Pk do not depend on n. In order to study the convergence in
law of coefficients (∆1(An), . . . ,∆k(An)), it suffices to study the convergence of traces(
Tr[A1

n], . . . ,Tr[Akn]
)

which is given by Theorem 5.3.3. Recall that r denotes the radius of
convergence of g, see Definition 5.2.1.

Theorem 5.3.3 (Convergence of coefficients). Let k ⩾ 1 and assume that gΘ ∈ F (r, γ,K)
for r > 0 and γ > 0. We have the convergence in law as n → ∞,(

Tr[An], . . . ,Tr
[
Akn

])
→ (X1, . . . , Xk) (5.3.1)

where
Xk =

∑
ℓ|k

ℓYℓ (5.3.2)

with (Yℓ, ℓ ⩾ 0) are independent Poisson random variables with parameter θd
d r

d.

Thanks to Lemma 5.3.1, Theorem 5.3.2 and Theorem 5.3.3, we derive that pn converges
towards the random analytic function F ∈ H(D) given by

F (z) = 1 +
∑
k⩾1

(−z)k

k! Pk(X1, . . . , Xk).

To obtain the expression of Theorem 5.2.2, we rely on Theorem 5.3.4, proved in Section
5.6 which yields the desired expression and ends the proof of Theorem 5.2.2.

Theorem 5.3.4 (Poisson expression for F ). For every z ∈ D, one has almost surely,

F (z) = exp(−f(z)) (5.3.3)

where
f(z) =

∑
k⩾1

Xk

k
zk

and where (Xk)k⩾1 are defined as in Theorem 5.2.2.

5.4 Tightness
The goal of this section is to prove Theorem 5.3.2. We start by Lemma 5.4.1 which reduces
the tightness of a sequence of a functions (fn) to proving tightness of their local supremum.
This Lemma corresponds to Proposition 2.5 of [Shi12].

Lemma 5.4.1 (Reduction to uniform control). Let (fn)n⩾1 be a sequence of random
elements of H(D). If for every compact K ⊂ D, the sequence (supz∈K |fn(z)|)n⩾1 is tight,
then (fn)n⩾1 is tight.

It therefore suffices to show that (supz∈K |fn(z)|)n⩾1 is tight. By subharmonicity of
|fn(z)|2, this is equivalent to show that (supz∈K E[|fn(z)|2])n⩾1 is bounded, see for in-
stance [Shi12, Lemma 2.6]. We will show this for the sequence (pn)n⩾1 of characteristic
polynomials by giving a uniform control of the second moment of pn which is Proposition
5.4.2. This control comes from an asymptotic given in Corollary 3.8 of [Hug+13] where
we explicit the fact that the error is uniform for z in compact subsets of D.

Recall that the functions gΘ andGΘ are defined in (5.1.2) by gΘ =
∑
k⩾1

θk
k z

k and GΘ(z) =
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exp(gΘ(z)) for |z| < r where r is the radius of convergence of gΘ. For notation convenience,
we will denote them by g and G without specifying the parameter Θ. For δ > 0, let us
denote by

Dδ = {z ∈ C | |z| < δ}

the open disk of radius δ.

Proposition 5.4.2 (Second moment control). Assume that g ∈ F (r, γ,K) for some r > 0,
γ ⩾ 0 and K ∈ C. For δ ∈ (0, 1) and z ∈ Dδ, one has the asymptotic expansion

E[|pn(z)|2] = G(r|z|2)
G(rz)G(rz) +O

( 1
n

)
(5.4.1)

where the O term holds uniformly in z ∈ Dδ.

Proof. Let δ ∈ (0, 1). For z ∈ Dδ, one has using Corollary 3.6 of [Hug+13]∑
n⩾0

tnhnE[|pn(z)|2] = exp(g(t))Sz(t) (5.4.2)

where hn are the coefficients of (5.1.1) and

Sz(t) = G(t|z|2)
G(tz)G(tz) . (5.4.3)

We now apply the method of [Hwa94] to exp(g(t))Sz(t) as done in Section 5.3.2 therein.

For every z ∈ Dδ, the function t 7→ G(zt) is analytic for |t| ⩽ r + ϵ1 for some ϵ1 > 0
such that δ(r + ϵ1) < r since G(u) = exp(g(u)) and since that g is analytic in Dr. There-
fore, for every z ∈ Dδ, t 7→ Sz(t) is analytic for |t| ⩽ r + ϵ1.
By assumption, g is analytic in ∆(r, r + ϵ2, ϕ) \ {r} for some ϵ2 > 0 and 0 < ϕ < π

2 . Set
R = r + min(ϵ1, ϵ2) and ξ > 0 such that reξ < R. As in the proof of Theorem 12 in
[Hwa94], we write

hnE[|pn(z)|2] = 1
2iπ

∫
Γ

exp(g(t))Sz(t)
tn+1 dt+ 1

2iπ

∫
Γ′

exp(g(t))Sz(t)
tn+1 dt

where

Γ = {t ∈ C | |t− 1| = r(eξ − 1), | arg(t− r)| ⩾ ϕ}
Γ′ = {t ∈ C | |t| = reξ, | arg(t− r)| ⩾ ϕ}.

For the second integral over Γ′, we may use that

|Sz(t)| ⩽
sup|u|⩽δ2reξ |G(u)|
(inf |u|⩽δreξ |G(u)|)2 = C (5.4.4)

where C does not depend on z. The contribution of this integral is O(r−ne−nξ) as in
[Hwa94] and where the O term is uniform in z. The asymptotic of the integral over Γ
involves the function Sz only via Uz(t) where

Uz(t) = h(t)Sz(re−t)
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with h defined with the parameters relative to g only. The asymptotic in [Hwa94] relies
on the asymptotic development Uz(t) = Sz(r) + O(|t|). For our concerns, we check that
the error term is uniform in z. We have

Uz(t) = h(t)(Sz(r) +O(|t|))

where the O is uniform in z since the constant can be taken as sup|t|⩽r |S′
z(t)| which can be

bounded uniformly with respect to z by bounding values of G and G′ in Drδ in a similar
fashion as in (5.4.4). Since h(t) = (1 + O(|t|)) does not depend on z, we derive that
Uz(t) = Sz(r) + O(|t|) uniformly in z ∈ Dδ. The rest of the proof of [Hwa94] applies so
that one derives the same asymptotic (5.4.1) with an error tern uniform in z ∈ Dδ.

From Proposition 5.4.2, one derives that E[|pn(z)|2] is bounded by a deterministic function
of z that does not depend on n so that the sequence (pn)n⩾1 is tight which ends the proof
of Theorem 5.3.2.

5.5 Convergence of traces

The purpose of this section is to prove Theorem 5.3.3 on the finite dimensional conver-
gence for traces of monomials A1

n, . . . , A
k
n. The study of the convergence of traces for

random permutation matrices following the generalized Ewens distribution has been done
in [NZ13]. The convergence of finite dimensional distributions is a consequence of a func-
tional equality on generating functions, see (5.5.1) below which is Theorem 3.1 of [NZ13],

∑
n⩾0

hnE
[
exp

(
i

b∑
m=1

smC
(n)
m

)]
tn = exp

(
b∑

m=1

θm
m

(eism − 1)tm
)
G(t). (5.5.1)

From (5.5.1), using the result of [Hwa94] on singularity analysis for generating functions,
one derives as done in [NZ13, Corollary 3.2], that for every k ⩾ 1, the convergence in law(

C
(n)
1 , . . . , C

(n)
k

)
→ (Y1, . . . , Yk)

holds with (Yℓ)ℓ⩾1 independent Poisson random variables with parameter θℓ
ℓ r

ℓ. Using that

Tr
[
Akn

]
=
∑
ℓ|k

ℓC
(n)
ℓ

yields the result of Theorem 5.3.3 by the Cramer-Wold theorem.

5.6 Poisson Expression for the limit

The goal of this section is to derive the expression of the limiting function as the exponen-
tial of a Poisson series as stated in Theorem 5.2.2. For the sake of completeness, we provide
another representation for the limit function of Theorem 5.2.2. This representation given
in Lemma 5.6.2 has the form of an infinite product and is inspired from [Cos23] where
the Poisson multiplicative function, that is, the exponential of a Poisson series appeared
in the context of Bernoulli matrices as presented in Section 2.3.3.
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Let (Yℓ)ℓ⩾1 be a family of independent Poisson random variables with parameters ( r
ℓθℓ
ℓ )ℓ⩾1.

Consider the power series

f(z) =
∑
k⩾1

Xk

k
zk, where Xk =

∑
ℓ|k

ℓYℓ.

Recall that r is the radius of convergence of the series g(z) =
∑
k⩾1

θk
k z

k so that 1
r =

lim supk θ
1
k
k . We first show that f is a well-defined function on the open disk D in Proposi-

tion 5.6.1. Computation of convergence radius for Poisson series were done in [CLZ24] for
independent Poisson variables (Y ′

ℓ )ℓ⩾1 with parameters (dℓℓ )ℓ⩾1. In particular, for d > 1,
the radius of convergence of f ′ =

∑
k⩾1

X′
k
k z

k with X ′
k =

∑
ℓ|k ℓY

′
ℓ is almost surely equal

to 1
d , see Theorem 2.7 in [CLZ24].

Proposition 5.6.1 (Radius of convergence for limit function). Almost surely, the radius
of convergence of f is greater than 1.

Proof. To find the radius of convergence of f , one must compute lim sup(Xkk )
1
k = lim supX

1
k
k .

Let ϵ > 0. There exists ℓ0 such that for ℓ ⩾ ℓ0,∣∣∣∣∣1r − sup
ℓ⩾ℓ0

θ
1
ℓ
ℓ

∣∣∣∣∣ ⩽ ϵ

r

so that for ℓ ⩾ ℓ0,
rℓθℓ ⩽ (1 + ϵ)ℓ.

Define on the same probability space sequences (Yℓ)ℓ⩾1 and (Y ′
ℓ )ℓ⩾1 having respective

parameters ( r
ℓθℓ
ℓ )ℓ⩾1 and (dℓℓ )ℓ⩾1, such that Yℓ ⩽ Y ′

ℓ almost surely for ℓ ⩾ ℓ0. Then,
almost surely,

Xk ⩽ X ′
k +

∑
ℓ|k
ℓ⩽ℓ0

ℓ(Yℓ − Y ′
ℓ )

where X ′
k =

∑
ℓ|k ℓY

′
ℓ . We have that

∑
ℓ|k
ℓ⩽ℓ0

ℓ(Yℓ − Y ′
ℓ ) ⩽

∑ℓ0
ℓ=1 ℓ(Yℓ − Y ′

ℓ ) = c where c is a

random constant that does not depend on k so that almost surely,

lim supX
1
k
k ⩽ lim sup

(
X ′
k + c

) 1
k ⩽ lim sup(X ′

k)
1
k = 1 + ϵ

where we have used that X ′
k + c ⩽ X ′

k(1 + |c|) for the second inequality and that the
convergence radius of

∑
k⩾1

X′
k
k z

k is almost surely 1
1+ϵ using Theorem 2.7 of [CLZ24].

Therefore, we have that, for every ϵ > 0, the convergence radius rf of f satisfies

rf ⩾
1

1 + ϵ
,

so that rf ⩾ 1 almost surely.

Since F (0) = 1 and that F ∈ H(D), one can consider log(F ) which is a well-defined
analytic function in a neighborhood of the origin, where log is the principal branch of the
logarithm. This function coincides with −f so that they are both equal. Both functions
are well-defined in the unit disk from which one derives the desired expression of Theorem
5.3.4.
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Lemma 5.6.2 (Infinite product expression). For z ∈ D, one has

exp(−f(z)) =
∏
k⩾1

(
1 − zk

)Yk
. (5.6.1)

Proof. The expression above is due to the inversion

∑
k⩾1

Xk

k
zk =

∑
ℓ⩾1

ℓYℓ
∑
k⩾1

zkℓ

kℓ
= −

∑
ℓ⩾1

Yℓ log(1 − zℓ),

which can be performed since uniform convergence holds for z ∈ D.

This provides an example of log-correlated field as correlations for such function r are given
by E[r(z)r(w)] = − log(1 − zw). For the generalized Ewens measure, the correlations are
given by the generating function g as stated in Lemma 5.6.3.

Lemma 5.6.3 (Correlations of Poisson field). For z, w ∈ D, one has

Cov(f(z), f(w)) =
∑
a,b⩾1

1
ab
g(rzawb). (5.6.2)

Proof. Since we want to compute correlations, we must consider the series

∑
k⩾1

Xk − E[Xk]
k

zk. (5.6.3)

From Proposition 5.6.1, we know that the convergence radius of
∑
k⩾1

Xk
k z

k is at least 1.
Let us check that the same holds for

∑
k⩾1

E[Xk]
k zk so that (5.6.3) is well-defined for z ∈ D.

Let ϵ > 0. As in Proposition 5.6.1, there exists ℓ0 ⩾ 1 such that for ℓ ⩾ ℓ0 : θℓrℓ ⩽ (1+ ϵ)ℓ.
Thus,

E[Xk] =
∑
ℓ|k

rℓθℓ ⩽
∑
ℓ|k
ℓ⩽ℓ0

(rℓθℓ − (1 + ϵ)ℓ) +
∑
ℓ|k

(1 + ϵ)ℓ

so that |E[Xk]| ⩽ (c + 1)τk where τk =
∑
ℓ|k(1 + ϵ)k and c =

∑
ℓ⩽ℓ0 |θℓrℓ − (1 + ϵ)ℓ|. The

latter implies that lim supk |E[Xk]|1/k ⩽ lim sup τ1/k
k = 1 + ϵ from which one derives that

the convergence radius of
∑
k⩾1

E[Xk]
k zk is greater than 1

1+ϵ . Since ϵ was arbitrary, the
convergence radius is greater or equal to one so that (5.6.3) is well-defined for z ∈ D. For
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z, w ∈ D, we thus compute

Cov(f(z), f(w)) =
∑
k,h

zkwh

kh

∑
i|h
j|k

ijCov(Yi, Yj)

=
∑
k,h

zkwh

kh

∑
ℓ|k,ℓ|h

ℓ2V ar[Yℓ]

=
∑
k,h

zkwh

kh

∑
ℓ|k,ℓ|h

ℓθℓr
ℓ

=
∑
ℓ⩾1

θℓr
ℓ

ℓ

∑
a,b⩾1

zaℓwbℓ

ab

=
∑
a,b⩾1

1
ab

∑
ℓ⩾1

θℓ
ℓ

(rzw)ℓ

=
∑
a,b⩾1

1
ab
g(rzawb).

Remark 5.6.4. In the case of uniform permutations [CLZ24] or even for Ewens random
permutations (1.1.12), that is, θk = θ for some θ > 0, one has r = 1 and g(z) = −θ log(1−z)
so that

Cov(f(z), f(w)) = −θ
∑
a,b⩾1

1
ab

log
(
1 − zawb

)
which is the analog of the log-correlations obtained for the Gaussian holomorphic chaos.
In general, the correlations for arbitrary sequences Θ are given by g. Moreover, the
expectation of the limit can be expressed using G for any z ∈ D,

E

∏
k⩾1

(
1 − zk

)Yk =
∏
k⩾1

e−θk r
kzk

k = 1
G(rz) .
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Chapter 6

Positive formula for the product of
conjugacy classes

In the framework of compact Lie groups, the problem of finding positive combinatorial for-
mulas for the expansion of characters has been solved in the case of the unitary group U(n)
by Littlewood and Richardson [LR34] and in full generality by Luzstig [Lus10], Kashiwara
[KN94] and Littelmann [Lit94]. The case of conjugacy classes is still open in full generality.
The goal of this chapter is to present our results which address this problem in the case of
U(n). Conjugacy classes of U(n) are indexed by the symmetrized torus H = (Rn/Zn) /Sn,
and the decomposition of the product of two conjugacy classes α and β is described by
a probability distribution P[·|α, β] on H. As for any compact Lie group, P[·|α, β] can be
expressed in a weak sense as a complex weighted sum of characters, each of which being
seen as a function on H, see (6.2.3). When the conjugacy classes α and β have maximal
dimension, in which case α and β are called regular, P[·|α, β] has a density dP[·|α, β] with
respect to the Lebesgue measure on H. This chapter provides a positive formula for this
density as a subtraction-free sum of volumes of some explicit polytopes.

The convolution of conjugacy classes of a compact Lie group G is also intimately re-
lated to the moduli spaces of G-valued flat connections on punctured Riemannian surfaces
as presented in Section 3.2.5. The formula we obtain for the convolution of conjugacy
classes directly translates into a simple and manifestly positive expression for the volume
of the moduli space of flat connections on the three-punctured sphere for G = SU(n).
This is up to our knowledge the first expression of those volumes as the volume of explicit
polytopes.

This chapter is structured as follows. In Section 6.1, we present the main results of
this chapter, namely Theorem 6.1.5 and Corollary 6.1.6. The first step of the proof is the
semi-classical approximation of the density of the convolution product by a limit of quan-
tum Littlewood-Richardson coefficients. Such approximation scheme is done in Section
6.2. All the work of the remaining part of this chapter consists in turning known expres-
sions for the quantum Littlewood-Richardson coefficients into integers points counting in
convex bodies, for which the convergence towards volumes of polytopes is straightforward,
see [KT99]. Section 6.3 introduces the puzzle expression for those coefficients obtained
in [Buc+16] and gives a first simplification of the puzzle formulation by only keeping the
position of certain pieces of the puzzles. It is then deduced in Section 6.4 an expression of
the coefficients as the counting of integers points in a family of convex polytopes indexed
by certain two-colored tilings which are reminiscent of Figure 6.4, see Theorem 6.4.3 and
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Corollary 6.4.4. Up to this point, those polytopes are degenerated and non-rational poly-
topes in a higher dimensional space, which prevents any proper asymptotic counting in
the semi-classical limit (a similar problematic situation already occurred with Berenstein-
Zelevinsky polytopes in the co-adjoint case, leading to the hive formulation of Knutson
and Tao, see [KT99]). By a combinatorial work on the underlying two-colored tiling, we
give in Section 6.5 a parametrization of the integer points of those polytopes in terms of
integer points of genuine convex bodies. Remark that the results of Section 6.4 hold more
generally for any coefficient of the two-step flag variety, a fact which is not true anymore
from Section 6.5. The asymptotic counting of integers points in convex bodies is then
much more tractable, and the conclusion of the proof of Theorem 6.1.5 and Corollary
6.1.6 is done in Section 6.6.

6.1 A positive formula for the density

Let n ⩾ 3. The set of conjugacy classes of U(n) is homeomorphic to the quotient space
H = (Rn/Zn) /Sn, where the symmetric group Sn acts on Rn/Zn by permutation of the
coordinates. This quotient space is described by the set of non-increasing sequences of
[0, 1[n. For θ = (θ1 ⩾ θ2 ⩾ · · · ⩾ θn) ∈ H, denote by O(θ) the corresponding conjugacy
class defined by

O(θ) :=
{
Ue2iπθU∗, U ∈ U(n)

}
, where e2iπθ =


e2iπθ1 0 . . .

0 e2iπθ2

... . . .
e2iπθn

 .

The product structure on U(n) translates into a convolution product ∗ : M1(H) ×
M1(H) → M1(H) on the space of probability distributions on H such that for θ, θ′ ∈ H,
δθ ∗ δθ′ is the distribution of p(UθUθ′), where Uθ (resp. Uθ′) is sampled uniformly on O(θ)
(resp. O(θ′)) and p : U(n) → H maps an element of U(n) to its conjugacy class in H.

Let us denote by Hreg = {θ ∈ H, θ1 > θ2 > . . . > θn} the set of regular conjugacy classes
of U(n), namely the ones of maximal dimension in U(n). For α, β ∈ Hreg, δα ∗ δβ admits
a density dP[·|α, β] with respect to the Lebesgue measure on{

γ ∈ H |
n∑
i=1

αi +
n∑
i=1

βi −
n∑
i=1

γi ∈ N
}
.

See Section 6.2 for a concrete proof of this classical result.

The toric hive cones Cg
The main result of this chapter is a positive formula for dP[·|α, β] in terms of the volume
of polytopes similar to the hive model of Knutson and Tao [KT99]. For 0 ⩽ d ⩽ n, define
the toric hive Rd,n as the set

Rd,n :=
{

(v1, v2) ∈ J0, nK2, d ⩽ v1 + v2 ⩽ n+ d
}
,

which can be represented as a discrete hexagon through the map (v1, v2) 7→ v1 + v2e
iπ/3,

see Figure 6.1 for a particular case and its hexagonal representation.
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• • •

• • • •

• • •

• •

Figure 6.1: The set R1,3 represented through the map (v1, v2) 7→ v1 + v2e
iπ/3.

Boundary of the toric hive

For any set S and any function f : Rd,n → S, we denote by fA (resp fB, fC) the vector
(f((d− i) ∨ 0, (n+ d− i) ∧ n)0⩽i⩽n (resp. (f(n+ d− i∧ n, i))0⩽i⩽n, resp. (f(n− i, i+ d−
n ∨ 0))0⩽i⩽n). The vectors fA, fB and fC correspond respectively to the north-west, east
and south-west boundaries of Rd,n through the hexagonal representation, see Figure 6.2.

• ◦ ◦ ◦ • •
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◦◦◦
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n−d−1 fC

1 fC
0 = fB

0

fB
1

fB
d−1

fB
d

fB
d+1

fB
n−1

fB
n = fA

0fA
1fA

d−1fA
d

fA
d+1

fA
n−1

fA
n = fC

n

fC
n−1

fC
n−d+1

fC
n−d

Figure 6.2: The set boundary vectors fA, fB and fC .

Toric rhombus concavity

Let us call a lozenge of Rd,n any sequence (v1, v2, v3, v4) ∈ (Rd,n)4 corresponding to one of
the three configurations of Figure 6.3 in the hexagonal representation (in which |vi−vi+1| =
1 for 1 ⩽ i ⩽ 3).

•v2

•
v1

•
v3

• v4 •v1

•
v4

• v3

• v2

•
v4

•
v3

•
v2

• v1

Figure 6.3: The three possible lozenges (v1, v2, v3, v4) (the position of the vertices can not
be permuted).
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Definition 6.1.1 (Regular labeling). A function g : Rd,n → Z3 is called a regular labeling
whenever

• gAi = n+ i[3], gBi = i[3] and gCi = i[3],

• on any lozenge ℓ = (v1, v2, v3, v4),(
g(v2) = g(v4)

)
⇒
{
g(v1), g(v3)

}
=
{
g(v2) + 1, g(v2) + 2

}
.

A lozenge (v1, v2, v3, v4) for which (g(v1), g(v2), g(v3), g(v4)) = (a, a + 1, a + 2, a + 1) for
some a ∈ {0, 1, 2} is called rigid. The support of a regular labeling g : Rd,n → Z3 is the
subset Supp(g) ⊂ Rd,n of vertices of Rd,n which are not a vertex v4 of a rigid lozenge
(v1, v2, v3, v4).

An example of regular labeling is shown in Figure 6.4. By the boundary condition of a
regular labeling, any vertex v4 of a rigid lozenge of g can not be on the boundary of Rd,n,
so that the latter is always contained in Supp(g).

Remark 6.1.2. Although given above in a compact form, there may be better ways
of considering a regular labeling for growing n. By seeing Rd,n through its hexagonal
representation, a regular embedding is equivalent to a tiling of Rd,n with either blue or red
equilateral triangles of size 1 or lozenges of size 1 with alternating colors on its boundaries,
such that the six boundary edges of Rd,n are alternatively colored red and blue, starting
with the color red on the south edge {(v1, v2) ∈ Rd,n, v2 = 0}. The bijection from the
former representation to the latter is given by assigning the red (resp. blue) color to any
edge of the form (v, v + e2iπℓ), 0 ⩽ ℓ ⩽ 2 along which the labels of g increase by 1 (resp.
decrease by 1), see Figure 6.4 for an example with n = 4, d = 1 and Proposition 6.6.9 for
a proof of this fact.

1 2 0

0 0 0 1

2 1 2

1 0

1 2 0

0 0 0 1

2 1 2

1 0

Figure 6.4: A regular labeling on Rd,n and its colored representation. Rigid lozenges are
shaded.

Definition 6.1.3 (Toric hive cone). A function f : Rd,n → R is called toric rhombus con-
cave with respect to a regular labeling g : Rd,n → Z3 when f(v2) + f(v4) ⩾ f(v1) + f(v3)
on any lozenge ℓ = (v1, v2, v3, v4), with equality if ℓ is rigid with respect to g.

For any regular labeling g, the toric hive cone Cg with respect to g is the cone

Cg =
{
f|Supp(g) | f : Rd,n → R toric rhombus concave with respect to g

}
.

As we will see later, for any regular labeling g, Supp(g) has cardinal (n− 1)(n− 2)/2 + 3n
and so is the dimension of Cg. As such, we recover the usual dimension of the classical
hive cone from [KT99]. The latter is then a particular case of toric hive cone for d = 0.
An example of a toric rhombus concave function in the case n = 3, d = 1 is given in Figure
6.5.
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Figure 6.5: A toric rhombus convave function for n = 3, d = 1: shaded lozenge are the
rigid ones yielding the equality cases in the toric rhombus concavity.

Definition 6.1.4 (Polytope P gα,β,γ). Let n ⩾ 3 and let α, β, γ ∈ Hreg be such that∑n
i=1 αi +

∑n
i=1 βi =

∑n
i=1 γi + d with d ∈ N. Let g be a regular labeling on Rd,n. Then,

P gα,β,γ is the polytope of RSupp(g)\∂Rd,n consisting of functions in Cg such that

fA =
(

n∑
s=1

βs +
i∑

s=1
αs

)
0⩽i⩽n

, fB =
(

(d− i)+ +
i∑

s=1
βs

)
0⩽i⩽n

, fC =
(
d+

i∑
s=1

γs

)
0⩽i⩽n

.

An example of an element of P gα,β,γ for n = 3 and d = 1 is depicted in Figure 6.5, for
α =

(
13
23 ⩾ 6

23 ⩾ 2
23

)
, β =

(
18
23 ⩾ 10

23 ⩾ 5
23

)
and γ =

(
20
23 ⩾ 9

23 ⩾ 2
23

)
.

Our main result gives then a formula for the density of the convolution of regular conjugacy
classes as a sum of volumes of polytopes coming from Cg for regular labeling g.

Theorem 6.1.5 (Probability density for product of conjugacy classes). Let n ⩾ 3 and let
α, β, γ ∈ Hreg be such that

∑n
i=1 αi +

∑n
i=1 βi =

∑n
i=1 γi + d with d ∈ N. Then,

dP[γ|α, β] = (2π)(n−1)(n−2)/2∏n−1
k=1 k!∆′(e2iπγ)

n!∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 regular
Volg

(
P gα,β,γ

)
, (6.1.1)

where ∆′(e2iπθ) = 2n(n−1)/2∏
i<j sin (π(θi − θj)) for θ ∈ H and Volg denotes the volume

with respect to the Lebesgue measure on RSupp(g)\∂Rd,n.

Note that the case n = 2 admits explicit formulas which do not need such a machinery.
Numerical experiments for n = 3 suggest that there are α, β ∈ Hreg for which any regular
labeling g yields a non-empty polytope P gα,β,γ for some γ ∈ Hreg. However, for a fixed
triple (α, β, γ) ∈ Hreg there seems to be generically only a strict subset of {P gα,β,γ}g regular
which are not empty and do contribute. Finally, remark that we only considered the case
of regular conjugacy classes to ensure the existence of a density for the convolution prod-
uct. Such a hypothesis is regularly assumed, see for example [Wit91; MW99]. However,
we expect similar results to hold in cases where less than n/2 coordinates of H are equal,
in which case the convolution product is still expected to have a density.

The main application of the previous result is the computation of the volume of moduli
spaces of flat SU(n)-connections on the three-punctured sphere. Computing such vol-
ume is an important task in the study of the Yang-Mills measure on Riemann surfaces



126 CHAPTER 6. PRODUCTS OF CONJUGACY CLASSES

in the small surface limit [For93], and it has been shown in [Wit92; MW99] that this
computation for arbitrary compact Riemann surfaces can be reduced to the case of the
three-punctured sphere by a sewing phenomenon. A similar inductive procedure is used in
[Mir07] to reduce the volume problem for the moduli space of curves to the genus zero case.

Let us denote by Σ3
0 the sphere with three generic marked points a, b, c removed. We

then denote by M(Σ3
0, α, β, γ) the moduli space of flat SU(n)-valued connections on Σ3

0
for which the holonomies around a, b, c respectively belong to Oα,Oβ and Oγ . In the
specific case of the punctured sphere, this moduli space can be alternatively described as

M(Σ3
0, α, β, γ) = {(U1, U2, U3) ∈ Oα × Oβ × Oγ , U1U2U3 = IdSU(n)}/SU(n),

where SU(n) acts diagonally by conjugation, see Section 3.2.5. As a corollary of Theorem
6.1.5, we thus get an expression of the volume of M(Σ3

0, α, β, γ) as a sum of volumes of
explicit polytopes.

Corollary 6.1.6 (Volume of flat SU(n)-connections on the sphere). Let n ⩾ 3 and con-
sider the canonical volume form on SU(n). For α, β, γ ∈ Hreg such that |α|1, |β|1, |γ|1 ∈ N,
then Vol

[
M(Σ3

0, α, β, γ)
]

̸= 0 only if
∑n
i=1 αi +

∑n
i=1 βi +

∑n
i=1 γi = n+d for some d ∈ N,

in which case

Vol
[
M(Σ3

0, α, β, γ)
]

= 2(n+1)[2](2π)(n−1)(n−2)

n!∆′(e2iπγ)∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 regular
Volg

(
P g
α,β,γ̃

)
,

where γ̃ = (1 − γn, . . . , 1 − γ1) and the polytopes P g
α,β,γ̃

are defined in Definition 6.1.4.

Note that the choice of normalization for the volume of SU(n) slightly differs from the
one used in [Wit91] for numerical applications. As a consequence of this corollary, the
volume is a piecewise polynomial in α, β, γ, up to the normalization factor coming from the
volume of the conjugacy classes. Such a phenomenon, which is a reflect of the underlying
symplectic structure, had already been observed in [MW99]. A same phenomenon occurs
in the co-adjoint case, see [CZ18; ER18] and in the study of moduli spaces of curves,
[Mir07].

6.2 Density formula via the quantum cohomology of the
Grassmannians

Let n ⩾ 1 and consider α, β ∈ H2
reg : α = (α1, . . . , αn), β = (β1, . . . , βn) where

1 ⩾ α1 > α2 > · · · > αn ⩾ 0 and 1 ⩾ β1 > β2 > · · · > βn ⩾ 0.

Up to multiplication by the center of U(n), suppose furthermore without loss of generality
that

n∑
i=1

αi = k and
n∑
i=1

βi = k′ (6.2.1)

for some k, k′ ∈ Z. Let A = Ue2iπαU∗, B = V e2iπβV ∗, where U, V are independent Haar
distributed matrices on U(n). Remark that A and B are respectively uniformly distributed
on the conjugacy classes O(α) and O(β), which lie in SU(n) ⊂ U(n).

The goal of this section, see Theorem 6.2.8, is to give a simple proof of the density formula
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(6.2.26) linking the probability dP[γ|α, β] that AB ∈ O(γ) for γ ∈ H to the structure
constants of the quantum cohomology of Grassmannians defined in Section 6.2.2. Such
a semi-classical convergence had been already suggested and proven several times in dif-
ferent forms (see [Wit91] for a similar approach with fusion coefficient and [Man16] for
a convergence in distribution). In Section 6.2.1, we recall in Proposition 6.2.1 a classical
expression of the density in terms of characters of irreducible representations of SU(n).
In Section 6.2.2, we link the density of Proposition 6.2.1 to the structure constants and
derive Theorem 6.2.8.

6.2.1 A first density formula

This part aims at recalling a proof of the formula (6.2.3) which gives the value of dP[γ|α, β]
as an infinite sum of characters. A similar treatment of the convolution of orbit measures
in the general context of Lie algebras can be found in [Man16, Sec. 7].

Let us denote by dg the normalized Haar measure on U(n) and for θ ∈ H, φθ the map

φθ : U(n) → O(θ) ⊂ SU(n)
U 7→ Ue2iπθU∗.

Let us write
mθ = φθ#dg (6.2.2)

for the push-forward of dg by φθ. The measure mθ is a measure on O(θ) called the orbital
measure. For any function f : O(θ) → R,∫

O(θ)
fdmθ =

∫
U(n)

f(ge2iπθg−1)dg.

Recall that the irreducible representations of the compact group SU(n) are parametrized
by λ ∈ Zn−1

⩾0 and we denote by (ρλ, Vλ) the corresponding representation where ρλ :
SU(n) → Vλ and χλ : EndVλ → C, x 7→ Tr[x] is the associated character.

Proposition 6.2.1 (Induced density of eigenvalues). Let (α, β) ∈ H2
reg and let A,B ∈

O(α) × O(β) be two independent random variables sampled from mα and mβ respectively.
Let C = AB ∈ O(γ) for some random γ ∈ (Rn/Zn)/Sn. The density of γ = γ1 > · · · >
γn ⩾ 0 is given by the absolute convergent series

dP[γ|α, β] = |∆(e2iπγ)|2

(2π)n−1n!
∑

λ∈Zn−1
⩾0

1
dimVλ

χλ
(
e2iπα

)
χλ
(
e2iπβ

)
χλ
(
e−2iπγ

)
. (6.2.3)

Another expression of the density (6.2.3) is given in (6.2.24). The rest of this section is
devoted to the proof of Proposition 6.2.1.

Definition 6.2.2 (Fourier Transform on SU(n)). Let m be a measure on SU(n). The
Fourier transform m̂ of m is defined as

m̂ : λ ∈ Zn−1
⩾0 7→ m̂(λ) :=

∫
SU(n)

ρλ(g)dm(g) ∈ EndVλ . (6.2.4)

In the case where m = mθ, the expression m̂θ(λ) is also known as the spherical transform
introduced in [ZKF21, eq. (56)].
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Lemma 6.2.3 (Fourier Transform of mθ). One has, for λ ∈ Zn−1
⩾0 ,

m̂θ(λ) =
χλ
(
e2iπθ

)
dimVλ

idVλ , (6.2.5)

where idVλ is the identity element of Vλ.

Proof. For any λ ∈ Zn−1
⩾0 and g ∈ SU(n), since the Haar measure is invariant by translation,

m̂θ(λ)ρλ(g) =
(∫

U(n)
ρλ(he2iπθh−1)dh

)
ρλ(g)

=
∫

U(n)
ρλ(he2iπθh−1g)dh

= ρλ(g)
∫

U(n)
ρλ(g−1he2iπθh−1g)dh

= ρλ(g)
∫

U(n)
ρλ(he2iπθh−1)dh = ρλ(g)m̂θ(λ).

Hence, m̂θ(λ) is a morphism of the irreducible representation ρλ and thus m̂θ(λ) = c · idVλ
for some c ∈ C. One computes the value of c by taking the trace which gives

c = χλ(e2iπθ)
dimVλ

. (6.2.6)

Definition 6.2.4 (Convolution of measures). Let m,m′ be two measures on SU(n). Let
m⊗m′ be the product measure on SU(n)×SU(n). Define mult : SU(n)×SU(n) → SU(n)
to be the multiplication on SU(n) : mult(g1, g2) = g1g2. The convolution of m and m′,
denoted by m ∗m′, is defined as

m ∗m′ := mult#(m⊗m′), (6.2.7)

which means that for any function f on SU(n),∫
SU(n)

f(g)d(m ∗m′)(g) =
∫

SU(n)

∫
SU(n)

f(g1g2)dm(g1)dm(g2).

For (α, β) ∈ H2, we write mα,β := mα ∗mβ the convolution of mα and mβ.

By Definition 6.2.4, the measure mα,β is the law on SU(n) of C = A · B where A and B
are sampled from measures µα and µβ on O(α) and O(β) respectively. Recall that for two
measures m,m′ on SU(n),

m̂ ∗m′(λ) = m̂(λ)m̂′(λ). (6.2.8)

In particular
m̂α,β(λ) = m̂α(λ)m̂β(λ). (6.2.9)

Recall that we are interested in the measure µα,β. By (6.2.9), one knows how to compute
its Fourier transform. Let us define the inverse Fourier transform.
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Definition 6.2.5 (Inverse Fourier Transform). Let f : λ ∈ Zn−1
⩾0 7→ f(λ) ∈ EndVλ be a

function such that

∥f∥2 =
∑

λ∈Zn−1
⩾0

dimVλ · Tr[f(λ)f∗(λ)] < ∞. (6.2.10)

The inverse Fourier transform of f is

f∨ : SU(n) → C (6.2.11)

g 7→
∑

λ∈Zn−1
⩾0

dimVλ · Tr
[
ρλ(g−1)f(λ)

]
. (6.2.12)

In order to apply inverse Fourier transform to m̂α,β, one needs to check condition (6.2.10).
This is the purpose of the next lemma.

Lemma 6.2.6 (Product Fourier transform is L2). For (α, β) ∈ H2
reg,∑

λ∈Zn−1
⩾0

dim(Vλ) Tr[m̂α,β(λ)m̂α,β(λ)∗] < ∞. (6.2.13)

Proof. Using (6.2.9) together with (6.2.5), one has

∑
λ∈Zn−1

⩾0

dim(Vλ) Tr[m̂α,β(λ)m̂α,β(λ)∗] =
∑

λ∈Zn−1
⩾0

1
dim(Vλ)2

∣∣∣χλ(e2iπα)
∣∣∣2 ∣∣∣χλ(e2iπβ)

∣∣∣2 .
(6.2.14)

Using Weyl’s character formula [CZ18, eq. (21)],

χλ(eiθ) = det[eiθrλ′
s ]1⩽r,s⩽n

∆(eiθ) (6.2.15)

where λ′ = (λ1, . . . , λn−1, 0) + ρ with ρ = (n − 1, . . . , 0) and where ∆(x1, . . . , xn) =∏
1⩽i<j⩽n(xi − xj) is the Vandermonde determinant. Recall that by assumption, αi ̸= αj

for i ̸= j and the same holds for β, so that the expressions ∆(e2iπα) and ∆(e2iπβ) are
well-defined. The previous sum becomes

1
|∆(e2iπα)∆(e2iπβ)|2

∑
λ1⩾···⩾λn−1⩾λn=0

∣∣∣det[e2iπαrλ′
s ]
∣∣∣2 ∣∣∣det[e2iπβrλ′

s ]
∣∣∣2

dim(Vλ)2 (6.2.16)

⩽
n2n

|∆(e2iπα)∆(e2iπβ)|2
∑

λ1⩾···⩾λn−1⩾λn=0

1
dim(Vλ)2 (6.2.17)

where we used Hadamard’s inequality for the upper bound on determinants. From the
identity

dim(Vλ) = ∆(λ′)
sf(n− 1) , (6.2.18)

which can be found in [Far08, Cor. 11.2.5] and where sf(n) =
∏

1⩽j⩽n j!, it suffices to
show that

Vn =
∑

λ1>···>λn=0

1
∆(λ)2 (6.2.19)
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converges for n ⩾ 2. One has that V2 =
∑
k⩾1 k

−2 < ∞. Let us write

∑
λ1>···>λn=0

1
∆(λ)2 =

∑
λ1>···>λn=0

∏
1⩽i<j⩽n

(λi − λj)−2

=
∑

λ2>···>λn=0

 ∑
λ1>λ2

∏
2⩽j⩽n

(λ1 − λj)−2

 ∏
2⩽i<j⩽n

(λi − λj)−2

⩽
∑

λ2>···>λn=0

 ∑
λ1>λ2

(λ1 − λ2)−2(n−1)

 ∏
2⩽i<j⩽n

(λi − λj)−2

the innermost sum is bounded by
∑
k⩾1 k

−2(n−1) ⩽
∑
k⩾1 k

−2 = V2 for n ⩾ 2. Thus,

Vn ⩽ V2Vn−1

so that for n ⩾ 2, Vn ⩽ (V2)n−1 which proves the convergence.

Lemma 6.2.6 shows that the Fourier transform of µα ∗ µβ is in L2, so that one can take
its inverse Fourier Transform. This leads to the following result.

Lemma 6.2.7 (Inverse Fourier of Convolution). Let (α, β) ∈ H2
reg and g ∈ SU(n). Then,

(m̂α,β)∨(g) =
∑

λ∈Zn−1
⩾0

1
dimVλ

χλ(e2iπα)χλ(e2iπβ)χλ(g−1), (6.2.20)

where the sum converges in L2(SU(n)).

Proof. Using (6.2.12) together with (6.2.9) yields

(m̂α,β)∨(g) =
∑

λ∈Zn−1
⩾0

dimVλ · Tr[ρλ(g−1)m̂α(λ)m̂β(λ)] (6.2.21)

=
∑

λ∈Zn−1
⩾0

dimVλ · Tr
[
χλ(e2iπα)χλ(e2iπβ)

dimV 2
λ

ρλ(g−1)
]

(6.2.22)

=
∑

λ∈Zn−1
⩾0

1
dimVλ

χλ(e2iπα)χλ(e2iπβ)χλ(g−1). (6.2.23)

Proof of Proposition 6.2.1. The induced density on γ is given by the density (6.2.20) mul-
tiplied by the Jacobian of the diagonalization map g 7→ V e2iπγV ∗ with γ = (γ1, . . . , γn)
such that

∑
γi ∈ Z. Since this Jacobian is |∆(e2iπγ)|2

(2π)n−1n! , see [Far08, Thm 11.2.1], we obtain
the desired expression.

Writing the density (6.2.3) using (6.2.15) and the fact that dimVλ = ∆(λ′)
sf(n−1) yields

dP[γ|α, β] = ∆(e2iπγ)sf(n− 1)
(2π)n−1n!∆(e2iπα)∆(e2iπβ)

∑
λ∈Zn−1

≥0

det
[
e2iπαrλ′

s

]
det

[
e2iπβrλ′

s

]
det

[
e−2iπγrλ′

s

]
∆(λ′) .
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Moreover, for θ = (θ1 ⩾ · · · ⩾ θn),

∆(e2iπθ) =
∏

1⩽r<s⩽n

(
e2iπθr − e2iπθs

)
= eiπ

∑
1⩽r<s⩽n(θr+θs) ∏

1⩽r<s⩽n
[2i sin (π(θr − θs))]

Let us compute

∑
1⩽r<s⩽n

(θr + θs) =
n−1∑
r=1

n∑
s=r+1

(θr + θs)

=
n−1∑
r=1

(
(n− r)θr +

n∑
s=r+1

θs

)

=
n−1∑
r=1

(n− r)θr +
n∑
r=1

(r − 1)θr

= (n− 1)
n∑
r=1

θr.

Thus, if one sets ∆′(e2iπθ) = 2n(n−1)/2∏
i<j sin (π(θi − θj)),

∆(e2iπγ)
∆(e2iπα)∆(e2iπβ) = eiπ(n−1)(|γ|−|α|−|β|)i−n(n−1)/2 ∆′(e2iπγ)

∆′(e2iπα)∆′(e2iπβ)

= (−1)d(n−1)i−n(n−1)/2 ∆′(e2iπγ)
∆′(e2iπα)∆′(e2iπβ)

where for the last equation, we used that |α| + |β| = |γ| + d. Therefore,

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
∆′(e2iπα)∆′(e2iπβ)n! J [γ|α, β], (6.2.24)

where ∆′(e2iπθ) has been defined in Theorem 6.1.5 and where

J [γ|α, β] = (−1)d(n−1)

(2iπ)n(n−1)/2

∑
λ∈Zn−1

≥0

1
∆(λ′) det

[
e2iπαrλ′

s

]
det

[
e2iπβrλ′

s

]
det

[
e−2iπγrλ′

s

]
.

(6.2.25)
is called the volume function for the unitary Horn problem.

6.2.2 Link with quantum cohomology of the Grassmannians

The goal of this section is to link the volume function (6.2.25) with structure constants of
the quantum cohomology ring of Grassmannians QH∗(Gr) in the same way as the volume
function in the coadjoint case is related to the classical cohomology ring of Grassman-
nians, see [CZ18]. The structure constants in the unitary case are the Gromov–Witten
invariants, which are related to characters via [Rie01, Cor. 6.2]. We refer the reader to
[MS04], [Buc03] and Section 3.2.3 for an introduction to the subject.

For N ⩾ n, let us denote by ZnN−n the set of partition λ ∈ Zn such that N−n ⩾ λ1 ⩾ · · · ⩾
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λn ⩾ 0. Then, the ring QH∗(Gr(n,N)) has an additive basis (qd ⊗ σλ, d ⩾ 0, λ ∈ ZnN−n).
We will denote by cν,dλ,µ the structure constants of this ring so that

σλ · σµ =
∑
ν,d⩾0

cν,dλ,µq
d ⊗ σν .

where the sum is over pairs (ν, d) ∈ ZnN−n × N such that |λ| + |µ| = |ν| + Nd. The
structure coefficients cν,dλ,µ are the degree d Gromov–Witten invariants associated to the
Schubert cycles σλ, σµ, σν∨ , see [Rie01, Cor. 6.2]. The main result of this section is
Theorem 6.2.8 below.

Theorem 6.2.8 (Density as limit of quantum coefficients). Let (α, β, γ) ∈ H3
reg. For each

N ⩾ 1, let (λN , µN , νN ) be three partitions in ZnN−n such that |λN | + |µN | = |νN | + dN
for some d ∈ Z⩾0 and such that 1

N λN = α + o(1), 1
N µN = β + o(1) and 1

N νN = γ + o(1)
as N → +∞. Then,

lim
N→∞

N−(n−1)(n−2)/2cνN ,dλN ,µN
= J [γ|α, β] = ∆′(e2iπα)∆′(e2iπβ)n!

sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
dP[γ|α, β].

(6.2.26)

The rest of this section is devoted to the proof of Theorem 6.2.8. In subsection 6.2.3
we prove a determinantal formula for the coefficients cν,dλ,µ along with some results on the
quantities involved in the expression. In subsection 6.2.4 we prove Theorem 6.2.8 using
Lemmas 6.2.16 and 6.2.15.

6.2.3 Determinantal expression for cν,dλ,µ

For 1 ⩽ n ⩽ N , set

In,N =
{

(I1, . . . , In) ∈
(
Z +

(1
2

)(n−1)[2]
)n

| −n− 1
2 ⩽ In < · · · < I1 ⩽ N − n+ 1

2

}
.

For I ∈ In,N , let us introduce the notations ξ = exp (2iπ/N) and ξI = (ξI1 , . . . , ξIn).

Lemma 6.2.9 (Determinantal expression for cν,dλ,µ). Let λ, µ, ν such that |λ| + |µ| = |ν| +
Nd. Then,

cν,dλ,µ = 1
Nn

∑
I∈In,N

det
[
e

2iπIr(λs+(s−1))
N

]
det

[
e

2iπIr(µs+(s−1))
N

]
det

[
e− 2iπIr(νs+(s−1))

N

]
∆(ξI) . (6.2.27)

Proof. Let us denote by

Sλ(x1, . . . , xn) =
det

[
x

(λs+(s−1))
r , 1 ⩽ r, s ⩽ n

]
∆(x)

the Schur function corresponding to the partition λ. Using [Rie01, Corollary 6.2]:

cν,dλ,µ = 1
Nn

∑
I∈In,N

Sλ(ξI)Sµ(ξI)Sν∨(ξI) |∆(ξI)|2

S(N−n)(ξI)
. (6.2.28)

Moreover, by [Rie01, eq. (4.3)], one has

Sν∨(ξI)
S(N−n)(ξI)

= Sν(ξI)
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so that

cν,dλ,µ = 1
Nn

∑
I∈In,m

Sλ(ξI)Sµ(ξI)Sν(ξI)|∆(ξI)|2

= 1
Nn

∑
I∈In,m

det
[
e

2iπIr(λs+(s−1))
N

]
det

[
e

2iπIr(µs+(s−1))
N

]
det

[
e− 2iπIr(νs+(s−1))

N

]
∆(ξI) . (6.2.29)

We are interested in the asymptotic behaviour of the previous expression as N → ∞. Let
us define

F (I, λ, µ, ν,N) =
det

[
e

2iπIr(λs+(s−1))
N

]
det

[
e

2iπIr(µs+(s−1))
N

]
det

[
e− 2iπIr(νs+(s−1))

N

]
∆(ξI) . (6.2.30)

Lemma 6.2.10 (Translation invariance). Let I ∈
(

1
2Z
)n

and a ∈ 1
2Z. We still assume

that |λ| + |µ| = |ν| +Nd for some d ∈ Z⩾0. Then,

F (I + a, λ, µ, ν,N) = (−1)2adF (I, λ, µ, ν,N). (6.2.31)

Proof. Since

det
[
exp

(2iπ(Ir + a)(λs + s− 1)
N

)]
= det

[
exp

(2iπIr(λs + s− 1)
N

)]
· exp

(
a

2iπ(|λ| +
∑n−1
l=0 l)

N

)
,

the numerator of F (I + a, λ, µ, ν,N) is the one of F (I, λ, µ, ν,N)) times the factor

exp
(
a

2iπ
N

(|λ| + |µ| − |ν| + n(n− 1)/2)
)

= (−1)2ad exp
(
a
iπn(n− 1)

N

)
since |λ| + |µ| − |ν| = dN . The Vandermonde in the denominator of F (I + a, λ, µ, ν,N) is

∆(ξI+a) =
∏

1⩽r<s⩽n

(
exp

(2iπ(Ir + a)
N

)
− exp

(2iπ(Is + a)
N

))

=
∏

1⩽r<s⩽n

(
exp

(2iπIr
N

)
− exp

(2iπIs
N

))
exp

(
a
iπn(n− 1)

N

)

= ∆(ξI) exp
(
a
iπn(n− 1)

N

)
so that the quotient cancels the common additional factor appearing in the numerator and
denominator of F (I + a, λ, µ, ν,N).

From Lemma 6.2.10, we can shift I by a = n−1
2 so that

F

(
I + n− 1

2 , λ, µ, ν,N

)
= (−1)d(n−1)F (I, λ, µ, ν,N). (6.2.32)

In the following, we will assume that 0 ⩽ In < · · · < I1 ⩽ N − 1 and that the I ∈ Zn.
Denote by Jn,N the set

Jn,N = {I ∈ {0, . . . , N − 1}n, I1 > I2 > . . . > In} .
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Definition 6.2.11 (Action ΦN and orbits). The translation action of Z on Jn,N is given
by

ΦN : Z × Jn,N → Jn,N

(l, I = (I1 > · · · > In)) 7→ I + (l, . . . , l) [N ]

where the tuple I+(l, . . . , l)[N ] consists of the sequence of elements I1 + l[N ], . . . , In+ l[N ]
sorted in the decreasing order.

Lemma 6.2.10 shows that F is invariant under the action of ΦN .

In order to give some properties of orbits of ΦN , let us recall the lexicographic order
on Zn⩾0. For I, J ∈ Zn−1

⩾0 , let r∗ = inf{1 ⩽ r ⩽ n | Ir ̸= Jr}, with the convention that
r∗ = 0 if I = J . We say that I > J if Ir∗ > Jr∗ and I < J if Ir∗ < Jr∗ . This defines a
total order on Zn⩾0 and by restriction on Jn,N .

Let Orbits(N) denote the orbits of the action of ΦN on Jn,N . For ΩN ∈ Orbits(N), denote
by min(ΩN ) its minimal element with respect to the lexicographic order. Then, neces-
sarily, (min(ΩN ))n = 0, otherwise Φ(−1,min(ΩN )) would be an element of ΩN strictly
inferior to min(ΩN ). For an ordered n-tuple I of {0, . . . , N − 1}n, let Ω(I,N) denote its
orbit under the action of ΦN .

Lemma 6.2.12 (Orbit structure for large N). Let I = (I1 > · · · > In−1 > In = 0). Then,
for N large enough, the orbit of I under the action of ΦN has cardinal N and I is its
minimal element:

∃M = M(I),∀N ⩾M : I = min(Ω(I,N)) and |Ω(I,N)| = N. (6.2.33)

Proof. Let GI,N denote the stabilizer of I under ΦN . Then, NZ ⊂ GI,N so that GI,N =
pNZ for some pN ⩾ 1 such that pN |N . Set d(N) = N − I1 ⩾ 1. Then, for pNZ to
be the stabilizer of I, one must have d(N) ⩽ pN (recall that In = 0), for otherwise
I1 + pN ̸∈ {I2, . . . , In}. However, as I1 is fixed, for N > 2I1, N

2 < d(N) ⩽ pN which
implies with pN |N that pN = N . Hence, for such N , the corresponding orbit has cardinal
N .

Let us show that I is minimal in its orbit Ω(I,N) when N is large enough. Take N
such that I1 <

N
2 . The only points J in the orbit of I such that Jn = 0 and J ̸= I are

{ΦN (−In−1, I),ΦN (−In−2, I), . . . ,ΦN (−I1, I)}

These tuples are all strictly greater than I since N − (Ik − Ik+1)− I1 ⩾ N −2I1 > 0. Since
the minimal element of an orbit must have In = 0, the only possibility is I.

Lemma 6.2.13 (Orbit decomposition). Let n,N be fixed. Then,∑
I∈In,N

F (I, λ, µ, ν,N) = (−1)d(n−1) ∑
I:In=0

1I=min(Ω(I,N))|Ω(I,N)|F (I, λ, µ, ν,N). (6.2.34)

Proof of Lemma 6.2.13. By the translation invariance of Lemma 6.2.10,∑
I∈In,N

F (I, λ, µ, ν,N) = (−1)d(n−1) ∑
0⩽In<···<I1⩽N−1

F (I, λ, µ, ν,N)
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We decompose the elements 0 ⩽ In < · · · < I1 ⩽ N − 1 along orbits of the action defined
in Section 6.2.3.∑

0⩽In<···<I1⩽N−1
F (I, λ, µ, ν,N) =

∑
Ω∈Orbits(N)

∑
I∈Ω

F (I, λ, µ, ν,N)

=
∑

Ω∈Orbits(N)
|Ω|F (min(Ω), λ, µ, ν,N)

=
∑

0⩽In<···<I1⩽N−1
1I=min(Ω(I,N))|Ω(I,N)|F (I, λ, µ, ν,N)

We will need the following result which asserts that I1/N cannot be arbitrary close to one.

Lemma 6.2.14 (Uniform spacing of I1). Let n be fixed. Then,

∀N ⩾ n, ∀ Ω ∈ Orbits(N) : (min(Ω))1
N

⩽ 1 − 1
n
.

Proof of Lemma 6.2.14. Let N ⩾ n and consider Ω ∈ Orbits(N). Denote I = min(Ω)
its minimal element. Assume for the sake of contradiction that I1 > N − N

n . Divide the
interval ]0, N ] in n disjoint sub-intervals P1, . . . Pn of length N

n with

Pj =
(
j − 1N

n
, j
N

n

]
, 1 ⩽ j ⩽ n.

Since I1 > N − N
n and In = 0, I1 and In both belong to the last interval Pn. There are

n − 2 remaining elements I2 > · · · > In−1 to be placed inside the n − 1 unused intervals
P1, . . . , Pn−1 and Pn. Thus, there exists 1 ⩽ j ⩽ n − 1 such that I ∩ Pj = ∅. Take the
maximal such j and consider r = max{l ∈ [1, n] : Il ⩾ jNn } the index of the smallest
element of I greater than Pj . We claim that

J = ΦN (−Ir, I) < I

Indeed, since Pj is empty, J1 ⩽ N − N
n < I1. This contradicts the fact that I is minimal

in the orbit ΩN . See Figure 6.6 for an illustration of the argument.

6.2.4 Convergence of scaled coefficients

Lemma 6.2.15 (Control of F (I, λ, µ, ν,N)). Let n,N be fixed with n ⩾ 3. Then,

N−n+1

N (n−1)(n−2)/2 |F (I, λ, µ, ν,N)| ⩽ CI , (6.2.35)

for some CI such that
∑
I:In=0CI < ∞.

Proof of Lemma 6.2.15. One has

|F (I, λ, µ, ν,N)| =

∣∣∣∣∣∣det[e
2iπIrλ′

s
N ] det[e

2iπIrµ′
s

N ] det[e− 2iπIr(ν)′
s

N ]
∆(ξI)

∣∣∣∣∣∣ ⩽ n3n

|∆(ξI)| .
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I8

I7

I6

I5

I4
I3

I2

I1

P3P3

Figure 6.6: Illustration of the argument for N = 20 and n = 8. Red ticks are the jNn for
0 ⩽ j ⩽ n− 1 delimiting the Pj ’s. Here j = 3 is the maximal index for which Pj is empty,
see the red arc for P3 and r = 6 with Ir = 9. The rotation ΦN (−Ir, I) = ΦN (−9, I) = J
is represented by the dotted arrow. J has J1 = I7 − 9[20] = 15 which is strictly inferior to
I1 = 18 leading to a contradiction as I should be minimal in its orbit.

First,

1
|∆(ξI)| =

∏
1⩽r<s⩽n

∣∣∣∣exp
(2iπIr

N

)
− exp

(2iπIs
N

)∣∣∣∣−1

=
∏

1⩽r<s⩽n

∣∣∣∣2 sin
(
π(Ir − Is)

N

)∣∣∣∣−1
.

Recall that on [0, c] for 0 < c < π, one has by concavity sin(x) ⩾ sin(c)
c x. Using Lemma

6.2.14 for I minimal in its orbit,

∀1 ⩽ r < s ⩽ n : πIr − Is
N

⩽ π
I1
N

⩽ π

(
1 − 1

n

)
,

so that
sin
(
π(Ir − Is)

N

)
⩾ cn

Ir − Is
N

with cn = sinπ(1−1/n)
(1−1/n) . Thus,

1
|∆(ξI)| ⩽

(
N

2cn

)n(n−1)/2 ∏
1⩽r<s⩽n

1
Ir − Is

.

It remains to prove that
∑
I:In=0

1
∆(I) < ∞. We will proceed by induction on n. For n = 3,

the sum is ∑
I1>I2>I3=0

1
(I1 − I2)I1I2

=
∑
I2⩾1

1
I2

∑
I1⩾I2+1

1
(I1 − I2)I1

.

Moreover, for I2 ⩾ 1,

∑
I1⩾I2+1

1
(I1 − I2)I1

⩽
1

I2 + 1 +
∫ ∞

I2+1

1
t(t− I2)dt = 1

I2 + 1 + ln(I2 + 1)
I2
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which proves the convergence for n = 3 since
∑
I2⩾1

1
I2

(
1

I2+1 + ln(I2+1)
I2

)
= C < ∞. For

n ⩾ 4,∑
I1>···>In−1>In=0

∏
1⩽r<s⩽n

(Ir−Is)−1 =
∑

I2>···>In−1>In=0

∏
2⩽r<s⩽n

(Ir−Is)−1 ∑
I1>I2

∏
2⩽s⩽n

(I1−Is)−1

and, since ∑
I1>I2

∏
2⩽s⩽n

(I1 − Is)−1 ⩽
∑
I1>I2

(I1 − I2)−(n−1) ⩽ c3 = π2

6 ,

we have∑
I1>···>In−1>In=0

∏
1⩽r<s⩽n

(Ir − Is)−1 ⩽ c3
∑

I2>···>In−1>In=0

∏
2⩽r<s⩽n

(Ir − Is)−1 ⩽ cn−3
3 C < ∞.

Therefore,
N−n+1

N (n−1)(n−2)/2 |F (I, λ, µ, ν,N)| ⩽ n3n

|∆(ξI)| = CI .

with
∑
I:In=0CI < ∞ as wanted.

Lemma 6.2.16 (Pointwise convergence). Let (α, β, γ) ∈ H3 such that
∑n
i=1 αi+

∑n
i=1 βi =∑n

i=1 γi + d for d ∈ N. For N ⩾ 1, let (λN , µN , νN ) be three partition in ZnN−n such that
|λN |+ |µN | = |νN |+dN for some d ∈ Z⩾0 and such that 1

N λN = α+o(1), 1
N µN = β+o(1)

and 1
N νN = γ + o(1) as N → +∞. Let I = I1 > · · · > In−1 > In = 0 be fixed. Then,

lim
N→∞

N−nδI=min(Ω(I,N))|Ω(I,N)|
N (n−1)(n−2)/2 F (I, λN , µN , νN , N) (6.2.36)

= lim
N→∞

N−n+1

N (n−1)(n−2)/2F (I, λN , µN , νN , N) (6.2.37)

= (2iπ)−n(n−1)/2 1
∆(I) det[e2iπαrIs ] det[e2iπβrIs ] det[e−2iπγrIs ]. (6.2.38)

Proof of Lemma 6.2.16. The first equality is derived from Lemma 6.2.12 which implies
that for any I and N large enough

δI=min(Ω(I,N))|Ω(I,N)| = N.

For a fixed n ⩾ 3, by continuity,

lim
N→∞

det
[
exp

(2iπIr(λN,s + s− 1)
N

)]
= det[exp (2iπIrαs)]

lim
N→∞

det
[
exp

(2iπIr(µN,s + s− 1)
N

)]
= det[exp (2iπIrβs)]

lim
N→∞

det
[
exp

(
−2iπIr(νN,s + s− 1)

N

)]
= det[exp (−2iπIrγs)]

lim
N→∞

N−n+1

N (n−1)(n−2)/2∆(ξI)
=
( 1

2iπ

)n(n−1)/2 1
∆(I)

where for the last convergences, we used that sin
(
π(Ir−Is)

N

)
∼ π(Ir−Is)

N for a fixed subset
I. The four convergences above imply the result.
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Proof of Theorem 6.2.8. From (6.2.29), together with Lemma 6.2.13, one has

cνN ,dλN ,µN
= N−n(−1)d(n−1) ∑

I:In=0
δI=min(Ω(I,N))|Ω(I,N)|F (I, λN , µN , νN , N).

By Lemma 6.2.16 and Lemma 6.2.15 using the dominated convergence theorem we have
that

lim
N→∞

N−(n−1)(n−2)/2cνN ,dλN ,µN
= (−1)d(n−1)

(2iπ)n(n−1)/2

∑
I:In=0

det[e2iπαrIs ] det[e2iπβrIs ] det[e−2iπγrIs ]
∆(I)

= J [γ|α, β],

where J [γ|α, β] was defined in (6.2.25) and is such that

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
∆′(e2iπα)∆′(e2iπβ)n! J [γ|α, β].

6.3 Puzzles of the quantum cohomology of Grassmannians
and their skeleton

The main goal of this section is a rewriting of the puzzle formula of [Buc+16] for the
expression of quantum LR-coefficient in terms of a more compact form approaching the
hive model yielding the classical LR-coefficients, see [KT99]. This is done by encoding a
puzzle by a graph. We first present the underlying tiling region in Section 6.3.1, which
corresponds to the puzzle model, presented in Section 6.3.2. In Section 6.3.3, we represent
a puzzle via partitions of edges, vertices and faces of the triangular lattice. In Section
6.3.4, we define the graph of a puzzle using the previous partitions.

6.3.1 Triangular grid

Definition 6.3.1 (Triangular grid). The triangular grid of size N , denoted by TN , is the
planar graph whose vertices are the set VN = {r + seiπ/3, r, s ∈ N, r + s ⩽ N} and edges
are the set EN = {(x, y), x, y ∈ TN , |y − x| = 1}.
The set FN of faces of TN are triangles which are called direct (resp. reversed) if the
corresponding vertices (x1, x2, x3) ∈ V 3

N can be labelled in such a way that x2 − x1 = 1
and x3 − x1 = eiπ/3 (resp. x3 − x1 = e−iπ/3).
Any union of two triangles sharing an edge e is called a lozenge, and e is then called the
middle edge of the lozenge.

We denote by F+
N (resp. F−

N ) the set of directed (resp. reversed) triangles, so that
FN = F+

N ∪F−
N . For e ∈ EN , f ∈ FN , we write e ∈ f when e is an edge on the boundary of

f . Remark that the set of edges can be partitioned into three subset depending on their
orientation. If x = r + seiπ/3 ∈ TN we define three coordinates

x0 = N − (r + s), x1 = r, x2 = s,

and we usually denote an element of TN by those three coordinates to emphasize the
threefold symmetry of the triangle. We say that an edge e = (x, x + v) is of type ℓ, ℓ ∈
{0, 1, 2} when v = eiπ+2ℓiπ/3, see Figure 6.7.
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Type 0

Type 1

Type 2

Origin of the edge

Figure 6.7: Type of an edge in TN

Definition 6.3.2 (Edge coordinates). For x ∈ TN and ℓ ∈ {0, 1, 2} such that x +
eiπ+2ℓiπ/3 ∈ TN , the coordinates of the edge e = (x, x + eiπ+2ℓiπ/3) of type ℓ is the triple
(x0, x1, x2) and we denote by ei = xi the i–th coordinate. We define the height h(e) of an
edge of type ℓ by

h(e) = eℓ.

If e = (x, y) is of type ℓ, we have

yℓ = xℓ + 1, yℓ−1 = xℓ−1, yℓ+1 = xℓ+1 − 1. (6.3.1)

We denote by E(ℓ)
k the set of edges of type ℓ. Remark that the height of an edge does not

characterize its position, since for example the translations of an edge of type 1 by eiπ/3

will have the same height.

Definition 6.3.3 (Discrete boundary). The boundary ∂TN of the triangular grid TN is
the set of edges (x, y) lying on the boundary of the triangle [0, N ]∪[N,Neiπ/3]∪[0, Neiπ/3].

The boundary ∂TN can be decomposed into three subsets ∂T (i)
N , 0 ⩽ i ⩽ 2, where each set

∂T
(i)
N consists of edges of type i. The coordinates of the corresponding edges are then the

following.

∂T
(0)
N = ((r,N − r, 0), 0 ⩽ r ⩽ N − 1) ,

∂T
(1)
N = ((0, r,N − r), 0 ⩽ r ⩽ N − 1) ,

∂T
(2)
N = ((N − r, 0, r), 0 ⩽ r ⩽ N − 1) .

6.3.2 Puzzles and the quantum-LR coefficients

We will mainly work on puzzles describing the two-step flag cohomology from [Buc+16],
in the special case where they describe the quantum Littlewood-Richardson coefficients
previously introduced in Section 6.2.
Let us consider the set of puzzle pieces given in Figure 6.8, which are considered as the
assignment of a label in {0, . . . , 7} to edges of TN around a triangular face. Each piece
can be rotated by a multiple of π

3 but not reflected.

0

0

00 1 1

1

1

3

40

7

3

2

22 2 1

4

2

5

20

6

Figure 6.8: Possible pieces of the puzzle
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Definition 6.3.4. A triangular puzzle of size N ⩾ 1 is a map P : EN → {0, . . . , 7}
such that the value around each triangular face belongs to the set of possible puzzle piece
displayed in Figure 6.8.
The boundary coloring ∂P of a puzzle P is the sequence (ω0, ω1, ω2) such that ωℓ is the
sequence (P (e))e∈∂(ℓ)TN

, where ∂(ℓ)TN is the sequence of boundary edges of TN of type ℓ
ordered by their height.

For any triple (ω0, ω1, ω2) of words in {0, 1, 2}N , we denote by P (ω0, ω1, ω2) the set of
puzzles whose boundary coloring is (ω0, ω1, ω2). For 0 ⩽ k0 ⩽ k0 + k1 ⩽ N , denote by
F (k0, k1, N) the two-step flag manifold

F (k0, k1, N) := {V0 ⊂ V1 ⊂ CN , dimV0 = k0, dimV1 = k0 + k1}.

The cohomology ring H∗F (k0, k1, N) admits a basis {σω} of Schubert cycles indexed by
words in {0, 1, 2}N with k0 occurrences of 0 and k1 occurrences of 1, see Section 3.2.4.
Proving a conjecture of Knutson, it has been shown in [Buc+16] that the previously
constructed puzzles describe the structure constants of H∗F (k0, k1, N).

Theorem 6.3.5 ([Buc+16]). For any triple (ω0, ω1, ω2) of words in {0, 1, 2}N with same
number of occurrences k0 of 0 and k1 of 1,

⟨σω0σω1σω2 , σ0⟩H∗F (k0,k1,N) = #P (ω0, ω1, ω2),

where σ0 is the fundamental class of H∗F (k0, k1, N).

Thanks to a previous work [Buc03] relating the quantum cohomology of Grassmannians
to the classical cohomology of the two-step flag manifold, Theorem 6.3.5 yields a similar
expression in terms of puzzles for the quantum Littlewood-Richardson coefficients.

Corollary 6.3.6 ([Buc+16]). Let 1 ⩽ n ⩽ N and λ0, λ1, λ2 be partitions of length n

with first part smaller than N − n such that |λ1| + |λ2| = |λ0| + Nd. Then, cλ
0,d
λ1,λ2 =

#P (ω0, ω1, ω2), where ωℓ, ℓ ∈ {0, 1, 2} are constructed as follows :

1. for ℓ ∈ {1, 2}, set ωℓ(λℓi + (n− i)) = 0 for 1 ⩽ i ⩽ n and ωℓ(i) = 2 otherwise,

2. set ω0(N − 1 − (λ0
i + (n− i))) = 0 for 1 ⩽ i ⩽ n and ω0(i) = 2 otherwise,

3. for ℓ ∈ {0, 1, 2}, replace the d last occurrences of 0 and the d first occurrences of 2
in ωℓ by 1.

The goal of this section and the next one is then to give a convex formulation of the
latter results, yielding Theorem 6.4.3 for the expression of the structure constants of
H∗F (k0, k1, N) and Corollary 6.4.4 for the corresponding result concerning the quantum
Littlewood-Richardson coefficients.

6.3.3 Edge, vertex and face partitions

The set of pieces can be further simplified in two steps by gluing some pieces along edges
having same labels. First, gluing two pieces with edges having label 2 along a common edge
labeled 4, 5 or 6 yields lozenges with edge labelled 2 and either 0, 1 or 3; then concatenating
consecutively such lozenges on edges having same label 0, 1 or 3 and considering also the
triangle with all edges labeled 2 yield the pieces of Figure 6.10, which are called pieces of
type II. Let us then call pieces of type I any piece displayed in Figure 6.9 which consists
of the first three triangles of Figure 6.8 and pieces obtained by concatenating two pieces
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Figure 6.9: Puzzle pieces of type I.
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Figure 6.10: Puzzle pieces of type II.

with label (2, 4, 1) and an arbitrary even number of pieces with label (4, 7, 0). We will first
show that a puzzle P is completely characterized by the position of pieces of type I.
Let us first mention a first general result on height of edges on the border of a same
triangle.

Lemma 6.3.7 (Triangle sum). Suppose that f is a face of TN with edges e0, e1, e2. Then,

h(e0) + h(e1) + h(e2) = N − 1 if f is direct
h(e0) + h(e1) + h(e2) = N − 2 if f is reversed.

(6.3.2)

Moreover, eii−1 = ei−1
i−1 (resp. eii−1 = ei+1

i−1), for i ∈ {0, 1, 2} if f is direct (resp. reversed).

Proof. A direct triangle has edges e0 = (N−(i+j+1), i+1, j), e1 = (N−(i+j+1), i, j+1)
and e2 = (N − (i+ j), i, j) for some 0 ⩽ i, j ⩽ N − 1 with i+ j ⩽ N − 1, so that

h(e0) + h(e1) + h(e2) = N − 1 + 0 + 0 = N − (i+ j + 1) + i+ j = N − 1.

A reversed triangle has edges e0 = (N − (i+ j+ 1), i, j+ 1), e1 = (N − (i+ j), i− 1, j+ 1)
and e2 = (N − (i+ j), i, j) for some 1 ⩽ i, j ⩽ N − 1 with i+ j ⩽ N − 1, so that

h(e0) + h(e1) + h(e2) = N − 1 + 0 + 0 = N − (i+ j + 1) + i− 1 + j = N − 2.

It is also clear from the coordinates of the edges that eii−1 = ei−1
i−1 (resp. eii−1 = ei+1

i−1) for
i ∈ {0, 1, 2} if the triangle is direct (resp. reversed).

Definition 6.3.8 (Edge set, vertex, edge and face partitions). The edge set of a puzzle
P is the set E of edges labeled 0, 1, 3 of either a type I piece or on the boundary.
The vertex partition of E is the covering Pv of E whose sets of size greater than one consist
of all the edges colored {0, 1, 3} of a same type I piece and singletons consists of edges of
E on the boundary of TN not belonging to a type I piece.
The edge partition of E is the set partition Pe of E whose blocks of size greater than one
consist of edges of a common type II piece.
The face partition Pf is the set partition of VN whose blocks are the connected components
of the subgraph of TN obtained by only keeping the edges colored 2.
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Remark that Pe can also have singletons. An element e ∈ E is a singleton of Pe if and only
if it is a common edge of two type I pieces. However, no element of E can be a singleton
of both Pv and Pe, since a border edge colored 0 or 1 not belonging to a type I piece has
to belong to a type II piece.

Lemma 6.3.9 (Blocks of Pv). A block of order 3 in Pv consists of three edges e0, e1, e2

of type 0, 1, 2 such that

• either eii−1 = ei−1
i−1, i ∈ {0, 1, 2} and

∑2
i=0 h(ei) = N − 1, or eii−1 = ei+1

i−1, i ∈ {0, 1, 2}
and

∑2
i=0 h(ei) = N − 2,

• (c(e0), c(e1), c(e2)) is either (0, 0, 0), (1, 1, 1) or any cyclic permutation of (0, 1, 3).

A block of order 2(r + 1), r ⩾ 2 in Pv consists of 2(r + 1) edges
{e0, f1, . . . , f r, e0′

, f1′
, . . . , f r

′} such that

• e0, e0′ are of type i and f1, . . . , f r, f1′
, . . . , f r

′ are of type i + 1 mod 3 for some
i ∈ {0, 1, 2},

• h(e0) = h(e0′) and f1
i = · · · = f ri = f1′

i + 1 = · · · = f r
′
i + 1 = h(e0) + 1,

• h(fs) = h(f s′) = h(f1) + (s− 1) = e0′
i+1 for 1 ⩽ s ⩽ r,

• the edges f0 and f r+1′ of type i+ 1 with f r+1
i = f r+1′

i + 1 = h(e0) + 1 and h(f0) =
e0′
i+1 − 1 and h(f r+1′) = e0

i+1 − 1 are not in E.

Any edge e ∈ E belongs to at most two blocks of Pv.

Proof. In the case of a block of order 3, {e0, e1, e2} is a triangle of TN and the results on
the height of the edges is given by Lemma 6.3.7. The results on the color of the edges is
given by the possible coloring of edges of Type I pieces from Figure 6.9.
In the case of a block B of order 2(r + 1), the edges correspond to the boundary edges
not colored 2 of a puzzle piece of the last shape of Figure 6.9. We can thus first label
cyclically the boundary edges colored 0 and 1 as {e0, f1, . . . , f r, e0′

, f1′
, . . . , f r

′} so that e0

and e0′ are colored 1 and of type i ∈ {0, 1, 2} and f i, f i
′
, 1 ⩽ i ⩽ r are colored 0 and are

of type i+ 1. Then, remark that such a piece is the concatenation of r+ 1 direct triangles
T1, . . . , Tr+1 and r + 1 reversed triangles T ′

1, . . . , T
′
r+1 such that Ti and T ′

i (resp. T ′
i and

Ti+1) share an edge of type i+1 (resp. i−1), e0 (resp. e0′ is the edge of type i of T1 (resp.
T ′
r+1) end f i (resp. f i′) is the edge of type i + 1 of T ′

i (resp. Ti+1). The relations giving
the height and the labels of the edges are then direct consequences of Lemma 6.3.7.

Definition 6.3.10 (Admissible pair and strip). A pair B = {e1, e2} ⊂ EN of edges is
called admissible if e1 and e2 have same type j ∈ {0, 1, 2} and same height.
The strip SB of an admissible pair B = {e1, e2} of type j is the set of all edges e =
(x, y) ∈ EN such that x, y belong to the parallelogram delimited by e1 and e2. Namely,
if e1

j = e2
j and e2

j−1 ⩽ e1
j−1, SB is the set of edges (x, y) such that e1

j ⩽ xj , yj ⩽ e1
j + 1,

e2
j−1 ⩽ xj−1, yj−1 ⩽ e1

j−1.
The boundary ∂2SB of a strip SB consists of all edges of SB type j + 1.

Remark that such a definition is still valid if e1 = e2, in which case B = {e1} is always
admissible and SB = {e1}. In particular, for any B ∈ Pe for a puzzle P , SB consists of all
edges appearing on the type II piece bordered by elements of B: B coincide exactly the
boundary edges of SB which are not labeled 2 and ∂2SB consists of the boundary edges
of the type II piece which are labeled 2 (that is, all boundary edges except for B).
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Moreover, given a pair B = {e1, e2} of edges of same type j and same height, one can
rephrase the condition of belonging to the strip SB depending on the type of the edge we
consider:

• if e has type j, e ∈ SB if and only if ej = e1
j and ej−1 ∈ [e2

j−1, e
1
j−1],

• if e has type j + 1, e ∈ SB if and only if ej ∈ {e1
j , e

1
j + 1} and ej−1 ∈]e2

j−1, e
1
j−1],

• if e has type j − 1, e ∈ SB if and only if ej = e1
j + 1 and ej−1 ∈ [e2

j−1, e
1
j−1[.

Lemma 6.3.11 (Edge partition pairs are admissible). Let P be a puzzle and Pe the
corresponding edge partition. Any pair {e1, e2} ∈ Pe (with possibly e1 = e2) is admissible
and is such that C(e1) = C(e2) ∈ {0, 1, 3}. For any different blocks B,B′ ∈ Pe, SB∩SB′ ⊂
∂2SB ∩ ∂2SB′.

Proof. Recall that blocks of Pe of size greater that one corresponds to edges colored 0, 1
or 3 on the border of a same Type II piece from 6.10. In particular the blocks of size
greater than ones are only pairs, and the first part of the lemma is a direct consequence
of the possible type II pieces of Figure 6.10.

For the second part of the lemma, remark first that for any block {e1, e2} in Pe, SB∩E = B:
first, boundary edges of SB are either colored 0, 1 or 3 and in B or colored 2 and not in
E . Then, interior edges of SB which are colored 0, 1 or 3 are boundary edges of two pieces
with the same labelling of the second row of Figure 6.8 and thus are not in E (remark that
the second piece of the second row of Figure 6.8 is used in the last type I piece of Figure
6.8 but is surrounded by pieces with different boundary labels).

Consider two different blocks B,B′ ∈ Pe. Let e ∈ SB ∩ SB′ . Remark that any edge
of SB or SB′ is not on the border of the strip if and only if it is neither in B ∪ B′ nor
colored 2. Hence, if e is colored 2, then e ∈ ∂2SB ∩ ∂2SB′ . Suppose by contradiction that
e is not colored 2. Since B ∩ SB′ = SB ∩ B′ = ∅ and e is not colored 2, e belongs to the
interior of both SB and SB′ : hence, the two triangular puzzle pieces whose boundary is
e belong to SB and SB′ , and we deduce that there is an edge f1 colored 0, 1 or 3 which
belong to SB ∩ SB′ . If f1 ̸∈ B ∪ B′, f1 belong to the interior of SB and SB′ , and thus
there exists an edge f2 ∈ SB ∩ SB′ with f2

i+1 = f1
i+1 + 1. Let us repeat the process until

there is an edge fs ∈ SB ∩ SB′ which belongs to either B or B′. This means that B ∩ SB′

or B′ ∩ SB is not empty, which contradicts the fact proven previously that SB ∩ E = B
and SB′ ∩ E = B′. Hence, any edge not colored 2 does not belong to SB ∩ SB′ .

Definition 6.3.12 (Crossing pairs). We say that two admissible pairs B = {e1, e2} and
B′ = {e3, e4} of EN cross when

• either B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅,

• or B = {e1, e2}, B′ = {e3, e4} are blocks of size two which are of respective type
j, j + 1 for some j ∈ {0, 1, 2}, and

e3
j ⩽ e1

j = e2
j ⩽ e4

j e1
j+1 ⩽ e3

j+1 = e4
j+1 < e2

j+1.

Lemma 6.3.13 (Non-crossing condition). For any distinct pairs B,B′ ⊂ EN , the two
following properties are equivalent :

1. B and B′ do not cross,
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2. SB ∩ SB′ ⊂ ∂2SB ∩ ∂2SB′.

Proof. Let B,B′ be admissible pairs of EN .
If B is a singleton, then ∂2SB = ∅ and thus ∂2SB ∩ ∂2SB′ = ∅. Moreover, since B is a
singleton, B = SB. Hence, the non-crossing condition is equivalent to SB ∩ SB′ = ∅, and
B and B′ do not cross if and only if SB ∩ SB′ ⊂ ∅ = ∂2SB ∩ ∂2SB′ .
If B = {e1, e2} and B′ = {e3, e4} are pairs of the same type j ∈ {0, 1, 2}, the non-crossing
condition means that B ∩ SB′ = ∅ and B′ ∩ SB = ∅. Suppose that B and B′ cross, and
without loss of generality, assume that B ∩ SB′ ̸= ∅. Since B ∩ ∂2SB = ∅, we deduce that
B ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ . Hence, SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ .

Reciprocally, suppose that SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ , and assume without loss of gen-
erality that SB ∩SB′ ∩ (SB \ ∂2SB) ̸= ∅. Since ∂2SB is the set of edges of SB of type j+1,
there exists an edge e = (x, y) of type j or j − 1 in SB ∩ SB′ . If e is of type j, this means
that ej = e1

j = e2
j and ej+1 ∈ [e1

j+1, e
2
j+1]. Similarly, ej = e3

j = e4
j and ej+1 ∈ [e3

j+1, e
4
j+1].

Hence, [e1
j+1, e

2
j+1] ∩ [e3

j+1, e
4
j+1] ̸= ∅, and the extremity of one of these intervals is con-

tained in the other. Assume without loss of generality that e1
j+1 ⊂ [e3

j+1, e
4
j+1]. Then, e1

is an edge of type j such that e1
j = e3

j = e4
j and e1

j+1 ∈ [e3
j+1, e

4
j+1], thus e1 ∈ SB′ and

thus B ∩ SB′ ̸= ∅. If e = (x, y) is of type j − 1, then xj−1 = yj−1 − 1 and xj = yj + 1,
see (6.3.1). Hence, the conditions xj , yj ∈ {e1

j , e
1
j + 1} and xj−1, yj−1 ∈ [e2

j−1, e
1
j−1] from

Definition 6.3.10 yield that e′ = (x′, x) with x′
j = yj and x′

j−1 = xj is an edge of type j
which belongs to SB. Similarly, e′ ∈ SB′ , and the previous reasoning allows to conclude
that B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅.
Suppose finally that B = {e1, e2} and B′ = {e3, e4} are pairs of respective type j and j+1
for j ∈ {0, 1, 2}. Remark first that edges of ∂2SB have type j + 1 and edges of ∂2SB′ have
type j + 2, so that ∂2SB ∩ ∂2SB′ = ∅.
Suppose that B and B′ cross. First, if B ∩ SB′ ̸= ∅ or B′ ∩ SB′ ̸= ∅, then SB ∩ SB′ ̸= ∅
and thus SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ . Suppose that B ∩ SB′ = B′ ∩ SB′ = ∅, and thus

e3
j ⩽ e1

j = e2
j ⩽ e4

j e1
j+1 ⩽ e3

j+1 = e4
j+1 < e2

j+1.

Consider the edge e = (x, y) of type j + 1 with xj = e1
j and xj+1 = e3

j+1. Since e is of
type j + 1, yj = xj and yj+1 = xj+1 + 1. First, since xj+1, yj+1 ∈ {e3

j+1, e
3
j+1 + 1} and

xj = yj = e1
j ∈ [e3

j , e
4
j ], e ∈ SB′ . Then, remark that

xj−1 = N − (xj + xj+1) = N − e1
j − e3

j+1, e
1
j−1 = N − e1

j − e1
j+1, e

2
j−1 = N − e2

j − e2
j+1.

From the equality e1
j = e2

j and e1
j+1 ⩽ e3

j+1 < e2
j+1, we deduce that xj−1 ∈]e2

j−1, e
1
j−1].

Since yj−1 = N − yj − yj+1 = N − xj − xj+1 − 1 = xj−1 − 1, yj−1 ∈ [e2
j−1, e

1
j−1]. The two

latter inclusions together with yj = xj = e1
j yield that e ∈ SB. In particular, SB ∩SB′ ̸= ∅

and thus SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ .

Suppose that SB ∩ SB′ ̸= ∅. If B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅, then B and B′ cross.
When B ∩ SB′ = B′ ∩ SB = ∅, then SB ∩ SB′ ̸= ∅ if and only if ∂2SB ∩ SB′ ̸= ∅. One
implication is straightforward. For the other implication, remark that there is necessarily
an edge e ∈ SB ∩ SB′ which belongs to B or ∂2SB, and since B ∩ SB′ = ∅, e ∈ ∂2SB. In
particular, since B has type j, edges of ∂2SB have type j + 1 and thus e has type j + 1.
The edge e = (x, y) of type j + 1 belongs to ∂2SB if and only{

xj = yj ∈ {e1
j , e

1
j + 1},

xj−1 ∈ [e2
j−1, e

1
j−1] and yj−1 = xj−1 − 1 ∈ [e2

j−1, e
1
j−1].
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Similarly e of type j + 1 to belong to SB′ if and only if{
xj+1 = yj+1 − 1 = e3

j+1 = e4
j+1,

xj = yj ∈ [e3
j , e

4
j ].

Hence, e ∈ ∂2SB ∩ SB′ if and only if{
xj = yj ∈ {e1

j , e
1
j + 1} ∩ [e3

j , e
4
j ], xj+1 = yj+1 − 1 = e3

j+1

N − xj − e3
j+1 ∈]N − e2

j − e2
j+1, N − e1

j − e1
j+1].

If xj = e1
j , the latter conditions imply{

e3
j ⩽ e1

j = e2
j ⩽ e4

j ,

e1
j+1 ⩽ e3

j+1 = e4
j+1 < e2

j+1.

If xj = e1
j + 1, the latter conditions yield{

e3
j − 1 ⩽ e1

j = e2
j ⩽ e4

j − 1, xj+1 = yj+1 − 1 = e3
j+1

e1
j+1 − 1 ⩽ e3

j+1 = e4
j+1 < e2

j+1 − 1.

If e3
j − 1 = e2

j and e1
j+1 − 1 ⩽ e3

j+1 < e2
j+1 − 1, then e3

j = e2
j + 1 and

e3
j−1 = N − e3

j − e3
j+1 ∈]N − e2

j − e2
j+1, N − e2

j − e1
j+1] =]e2

j−1, e
1
j−1],

so that e3 ∈ SB by the condition following Definition 6.3.10. Likewise, if e3
j+1 = e1

j+1 − 1
and e1

j ∈ [e3
j , e

4
j ], then e1 ∈ SB′ . Hence, the fact that B ∩ SB′ = B′ ∩ SB = ∅ strengthens

the above condition to imply {
e3
j ⩽ e1

j = e2
j ⩽ e4

j ,

e1
j+1 ⩽ e3

j+1 = e4
j+1 < e2

j+1.

From the latter lemma, we deduce a description of puzzles in terms of their type I pieces.

Proposition 6.3.14 (Partitions determine puzzles). The map Φ : P 7→ (E , c) is a bijection
from the set of puzzles to the set of subsets of EN with a coloring c : E → {0, 1, 3} such
that there exist a covering Pv and a partition Pe of E with

• blocks of Pv are of size 3 or 2(r + 1), r ⩾ 1 and satisfy the properties of Lemma
6.3.9,

• blocks of Pe are either singletons or pairs satisfying the properties of Lemma 6.3.11,

• If e belong to only one block of Pv, then e is not a singleton of Pe and if e ̸= e′

belong to a same block of Pv, then {e, e′} ̸∈ Pe.

Proof. Let us build the candidate inverse bijection, and consider a subset E ⊂ EN with a
coloring c : E → {0, 1, 3} and a covering Pv and a partition Pe satisfying the conditions
of Proposition 6.3.14. For each pair B = (e, e′) ∈ Pe of type i and color c, color all edges
of type i (resp. i+ 1, resp. i+ 2) of the strip SB \ {e, e′} with the color c (resp. 2, resp.
c+ 5). Remark that such a coloring is possible, since by properties of Lemma 6.3.11, any
edge belonging to SB ∩ SB′ for two strips of respective types i, i′ must be included in the
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boundary ∂2SB ∩ ∂2SB′ , which consists then of edges of same type i + 1 = i′ + 1 colored
2 by the above rule.

Then, consider any block B ∈ Pv of order 2(r + 1) whose edges e, e′ colored 1 are of
type i. Remark then that by the properties of Lemma 6.3.9, B = {e, e′} is an admissible
pair of edges of E of same color 1. Moreover, all edges but two of the boundary ∂2SB of
the strip SB consists of edges of E colored 0.

Let i be the type of B, and suppose by contradiction that there is an edge e0 of type
i or i− 1 inside the strip SB which is contained in a strip SB̃ for some B̃ ∈ Pe. Suppose
first that B̃ ̸= {e0}. Then, since e0 shares a vertex with at least three edges of type i+ 1
colored 0, SB̃ must contain one of those three edges, called f1; since Pe is non-crossing
and f1 ∈ E ∩ SB̃, f1 ∈ B̃ and thus B̃ is of type i + 1. Since e0 ∈ SB̃ and B̃ is of type
i+ 1, the other edge f2 of SB with same height as f1 must also belong to SB̃, and by the
non-crossing condition we have B̃ = {f1, f2}. This contradicts the fact that two elements
of the same block of Pv do not belong to the same block of Pe.

If e0 is a singleton of Pe, then e ∈ E and belongs to at least two blocks of Pv. Hence,
there must be another edge e1 between e0 and e in the strip SB which belongs to E .
Iterating the process yields an edge ẽ such that e and ẽ belong to a same block B̃ in
Pv. Then, ẽ cannot be of type i − 1 otherwise this block would be a block of order 3,
contradicting the fact that the edge f of type i + 1 with fi = ei, fi+1 = ei+1 − 1, which
would then belong to this block B̃, does not belong to E . Similarly, if ẽ is of type i, then
e and ẽ would be boundary edges of type I piece with 2(r′ + 1) edges, with 1 ⩽ r′ < r.
This is impossible since the boundary ∂2S{e,ẽ} contains at most one edge which is not in
E . Hence, no edge of type i or i − 1 inside SB belongs to some strip SB for B ∈ Pe and
thus none of those edges has been colored 2 in the previous labelling. Therefore, one can
color all type i edge in SB̃ different from e, e′ with the label 7 and all type i − 1 edge in
SB̃ with label 6.

Finally, the edge f of type i+ 1 with fi = ei, fi+1 = ei+1 − 1 can not be part of a strip
SB̃ for some B̃ = (f1, f2) of type i + 1 or i − 1, for otherwise e would also belong to SB̃
and Pe would not be non-crossing. Hence, either f ∈ ∂2SB for some strip SB and f has
been labelled 2 in the first coloring step, or f has not been colored before and thus f can
be colored 2.

Color all remaining edges with the label 2. One then checks that the labels on the
boundary of any triangle of the puzzle satisfy the conditions of Figure 6.8, so that the
labelling of edges of EN yields a genuine puzzle P . It is then straightforward to check that
Pv = Pv and Pe = Pe. The map Φ is thus surjective.

For the injectivity, remark that the data of Pv alone gives the list and position of type
I pieces of the puzzle, which uniquely characterizes it.

6.3.4 Graph of a puzzle

Definition 6.3.15 (Graph of a puzzle). The graph of a puzzle P is the graph GP whose
set of vertices is Pv, set of edges is Pe and set faces is Pf .
The endpoints of an edge Be ∈ Pe are the vertices Bv, Bv′ ∈ Pv such that Be ∩Bv ̸= ∅ and
Be ∩Bv′ ̸= ∅.
The boundary of a face Bf ∈ Pv are the edges B ∈ Pe such that there is e ∈ B, v ∈ Bf
such that v is an endpoint of e. A face Bf ∈ Pf is called an outer face (resp. inner face)
if there is an element (resp. no element) v ∈ Bf on the border of TN .

Remark that elements of Pv and Pe are sets of edges of TN while elements of Pf are set of
vertices of TN . Moreover, any edge B ∈ Pe has a type ℓ ∈ {0, 1, 2} and a color c ∈ {0, 1, 3},
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which is the type and the color of the edges of TN in B.
Let Bf ∈ Pf and denote by ∂Bf the set of edges on the boundary of Bf . Then, there is a
natural cyclic order on ∂Bf such that ∂Bf = (B1 < . . . < Bp) where Bi and Bi+1 share a
vertex of Pv and the edges of ∂Bf are read in the clockwise order around the region Bf .

Lemma 6.3.16 (Type of face boundaries). Let Bf ∈ Pf . Then, the sequence of type of
edges on the boundary of Bf is a subsequence of (0, 1, 2, 0, 1, 2) (up to cyclic rotation), and
two consecutive edges B < B′ on the boundary of Bf sharing a vertex Bv ∈ Pv are

• of type (ℓ, ℓ + 1) if Bv is a block of size three and the color of B and B′ are either
both 0, both 1 or (3, 0), (0, 1) or (1, 3), or a block of size 2r, r ⩾ 2 and B,B′ have
respective color (0, 1).

• of type (ℓ, ℓ+ 2) if Bv is a block of size 2r, r ⩾ 2 and B and B′ have color (0, 1),

• of type ℓ if Bv is a block of size 2r, r ⩾ 3 and B and B′ have color 0.

Proof. Let (B1, . . . , Bp) be the previously defined cyclic ordering of the edges around Bf
such that Bi, Bi+1 share a vertex in Pv. Let 1 ⩽ i ⩽ p and denote by ℓ the type of
Bi. Since Bi, Bi+1 share the vertex Bv, there exist ei ∈ Bi and ei+1 ∈ Bi+1 such that
ei, ei+1 ∈ Bv. Since ei, ei+1 are not colored 2, the type and colors of ei (resp. ei+1) are
the ones of Bi (resp. Bi+1).
If Bv is a block of size 3, then it is a triangle vertex whose boundary colors in the clockwise
order are either (0, 0, 0), always (1, 1, 1), or (1, 3, 0) up to a rotation. Since the angle
between ei and ei+1 is −π/3, the type of ei+1 is ℓ + 1, and the colors Bi, Bi+1 are either
(0, 0), (1, 1), (3, 0), (0, 1) or (1, 3).
If Bv is a block of size 2(r + 1), r ⩾ 1, then 3 configurations can occur depending on the
colors of the consecutive edges :

• if ei is colored 1 and ei+1 is colored 0, then the type of ei+1 is ℓ+ 1,

• if ei is colored 0 and ei+1 is colored 1, then the type of ei+1 is ℓ− 1,

• if ei and ei+1 are both colored 0 then the edges are adjacent and have same type ℓ.
Remark that in this case, the vertex Bv must have at least 6 edges.

Finally, remark that the angle between two consecutive edges Bi, Bi+1 is equal to (1 −
ri/3)π if the difference of the type from Bi to Bi+1 is ri (with ri = 3 if Bi and Bi+1 have
both type ℓ). Since the sum of the angles must be equal to the (p− 2)π if Bf is an inner
face and smaller otherwise, we must have

∑p
i=1(1 − ri/3) ⩽ p− 2, so that

p∑
i=1

ri ⩽ 6.

We deduce that the sequence of types of edges of the boundary must be a subsequence of
(0, 1, 2, 0, 1, 2), up to cyclic permutation.

6.4 Discrete two-colored dual hive model
In this section, we associate to each puzzle of size N a two-colored hive in the same spirit
as in [KT99] using the graph representation of puzzles from Section 6.3.4. Beware that
because of the rigid crossings from Figure 6.9, the discrete hives will not be actual hives as
in [KT99] but rather a dual hive. Let us fix in this section the number k of edges colored
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0 or 1 on one edge of the puzzles. This number is the same on each edge of the puzzle
and is part of the boundary data of the puzzle. The two colored dual hive associated to a
puzzle will then be a decoration of the triangular grid Tk instead of TN . All the notation
introduced for TN are thus still valid for Tk.

Definition 6.4.1 (Two-colored discrete dual hive). A two-colored discrete dual hive of
size (k,N) is given by the following combinatorial data on Tk:

• a color map C : Ek → {0, 1, 3,m}, such that the boundary colors around each
triangular face in the clockwise order is either (0, 0, 0), (1, 1, 1), (1, 0, 3) or (0, 1,m)
up to a cyclic rotation.

• a label map L : Ek → N, with the two following conditions:

1. for all f ∈ Fk with boundary edges e0, e1, e2, L(e0) + L(e1) + L(e2) = N − 1
except when f ∈ F−

k with boundary colors different from {0, 1,m}, in which
case L(e0) + L(e1) + L(e2) = N − 2,

2. if e, e′ are edges of same type ℓ ∈ {0, 1, 2} on the boundary of a same lozenge,
then
(a) L(e) = L(e′) if the middle edge is colored m,
(b) L(e) ⩾ L(e′) if e′

ℓ+1 = eℓ+1 + 1 and no edge different from e′ is colored m,
(c) L(e) > L(e′) if either eℓ > e′

ℓ or if both e′
ℓ+1 = eℓ+1 + 1 and one of the

boundary edges different from e′ is colored m.

The boundary value [(c(0), c(1), c(2)), (l(0), l(1), l(2))] of a two-colored discrete dual hive is
the restriction of (C,L) to ∂Tk, where c(i) ∈ {0, 1, 3,m}k (resp. l(i) ∈ Nk) is the restriction
of C (resp. L) to ∂T (i)

k , for 0 ⩽ i ⩽ 2.

For (c, l) = (c(0), c(1), c(2), l(0), l(1), l(2)) ∈ {0, 1}3k ×N3k, we denote by H(c, l, N) the set of
two-colored discrete dual hives with boundary value (c, l).

Remark 6.4.2. As a corollary of the Condition (2) on the label map, we have L(e) > L(e′)
for any pair of edges e, e′ of same type ℓ such that eℓ > e′

ℓ and eℓ+1 ⩽ e′
ℓ+1. Indeed, it

suffices to show this for e, e′ such that eℓ = e′
ℓ + 1 and e′

ℓ+1 ∈ {eℓ+1, eℓ+1 + 1}. The case
e′
ℓ+1 = eℓ+1 is given by Condition (2.c), and we now suppose that e′

ℓ+1 = eℓ+1 + 1. Let
e′′ be such that e′′

ℓ+1 = e′
ℓ+1 and e′′

ℓ = eℓ = e′
ℓ + 1. If the middle edge of the lozenge with

boundary e′, e′′ is not colored m, then by Condition (2.c) we have L(e′′) > L(e′), and then
by (2.a) or (2.b), we get L(e) ⩾ L(e′′) > L(e′). If the middle edge of the lozenge with
boundary e′, e′′ is colored m, then L(e′) = L(e′′). Then, the middle edge colored m of this
lozenge is then a boundary edge of the lozenge with boundary e′′, e different from e′′ and
e, so that (2.c) implies that L(e) > L(e′′) = L(e′).

For any triple ω = (ω0, ω1, ω2) of words {0, 1, 2}N with k0 occurrences of 0 and k1 occur-
rences of 1, denote by (c(ω), l(ω)) the sequence (c(0), c(1), c(2), l(0), l(1), l(2)) ∈ {0, 1}3k×N3k

where k = k0 +k1 and c(i) is the word obtained from ωi by deleting the letters 2 and l(i) is
the sequence of positions of the letters 0 or 1 in ωi. The following result gives a formulation
of Theorem 3.2.12 in terms of integer points counting of polytopes.

Theorem 6.4.3 (Dual hive in the two-step case). For any triple ω = (ω0, ω1, ω2) of words
{0, 1, 2}N with k0 occurrences of 0 and k1 occurrences of 1,

⟨σω0σω1σω2 , σ0⟩H∗F (k0,k1,N) = #H(c(ω), l(ω), N). (6.4.1)
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Theorem 6.4.3 directly yields a similar expression of the quantum Littlewood–Richardson
coefficients as the number of integer points in discrete dual hives. For three partitions
λ, µ, ν of length n with first part smaller than N − n and such that |λ| + |µ| = |ν| + dN ,
set

H(λ, µ, ν,N) = H(c(ω), l(ω), N),

where ω is the triple of words in {0, 1, 2}N associated to λ1 = λ, λ2 = µ, λ0 = ν and for
the corresponding d.

Corollary 6.4.4 (Dual hive for the q-LR coefficients). For λ, µ, ν of length n with first
part smaller than N − n and such that |λ| + |µ| = |ν| + dN ,

cν,dλ,µ = #H(λ, µ, ν,N).

The rest of this section is then devoted to a proof of Theorem 6.4.3, which is obtained by
exhibiting a bijection ζ : P (ω) → H(c(ω), l(ω), N).

Given a puzzle P ∈ P (ω), let GP be the corresponding graph introduced in Section 6.3.4.
Let us first transform the graph GP into a new graph ĜP by blowing up each vertex v ∈ Pv
of size 2(r + 1) as follows.

Definition 6.4.5 (Blowup of vertex). Let vertex v ∈ Pv be a vertex of size 2(r + 1)
with adjacent edges (B1, . . . , B2r+2) (indexed in the cyclic order) such that B1, Br+2 have
type ℓ ∈ {0, 1, 2} and are colored 1 and Bi, i ̸∈ {1, r + 2} have type ℓ + 1 and are col-
ored 0. Introduce 2r − 1 new edges B̃1, . . . , B̃2r−1 of type ℓ − 1, ℓ, . . . , ℓ − 1 and colored
m, 1, . . . ,m and transform v into 2r vertices v1, . . . , v2r such that the edges adjacent to
v2j+1 are (B̃2j , B2r+2−j , B̃2j+1) and edges adjacent to v2j+2 are (B̃2j+1, B̃2j+2, Bj+2) with
the convention B̃0 = B1 and B̃2r = Br+2. We define the height of B̃i as h(B̃2i) = h(B1)
and h(B̃2i−1) = N − 1 − h(B1) − h(B2i) for 1 ⩽ i ⩽ r − 1.

The resulting graph is called the blowup of v.

The picture of the blowup of a vertex of size 6 is given in Figure 6.11.

Figure 6.11: Blowup of a vertex of size 6 : edges in blue (resp. red, resp. green) are of
type ℓ (resp. ℓ+ 1, resp. ℓ+ 2) and colored 1 (resp. 0, resp. m).

Definition 6.4.6 (Blowup of the graph of a puzzle). The blowup ĜP of the graph GP is
the graph obtained by blowing up every vertex of size 2(r + 1), r ⩾ 1.

Remark that the blowup of graph is well-defined because any vertex of size 2(r+ 1) of GP
has the form of Definition 6.4.5 thanks to Lemma 6.3.9. The blowup graph has then only
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vertices of degree 3 or singletons (which correspond to edges of TN on the boundary of
the triangle).

Lemma 6.4.7 (Faces in ĜP ). Let Bf be a face in ĜP . Then, the boundary of Bf has

• 6 edges if no edge of the boundary of Bf is a boundary edge of GP ,

• 4 edges if two edges of the boundary of Bf are boundary edges of GP of the same
type,

• 2 edges if two edges of the boundary of Bf are boundary edges of GP of different type.

Proof. By Lemma 6.3.16 and the blowing-up of vertices of degree larger than 4, two edges
B,B′ on the boundary of Bf sharing a vertex are of type (ℓ, ℓ+ 1), and the edge type of
boundary edges of Bf is a subsequence of (0, 1, 2, 0, 1, 2) (up to a cyclic rotation). The
only possibility for Bf to have less than 6 edges on the boundary is then having edges
which have a singleton as boundary vertex. The edge of E corresponding to this singleton
is necessary a boundary edge of the graph and thus Bf is a connected component of P2
touching the boundary of TN . There are then two possibilities : either Bf contain one of
the three extreme vertex of TN , in which case the boundary edges of Bf have different type
and by convexity, Bf has only two edges in ĜP , or Bf contains only boundary vertices
which are not extreme points of TN , in which case the boundary edges have same type ℓ
and the boundary of Bf consists of four edges of type (ℓ, ℓ+ 1, ℓ+ 2, ℓ).

Construction of a discrete two-colored dual hive from a puzzle

The resulting planar graph ĜP is thus a graph with only trivalent vertices and hexagonal
inner faces. From each side of the triangle TN , there are k − 2 faces B ∈ Pf which have
degree 4 (one for each pair of consecutive boundary edge labeled 0 or 1 on a same side of
TN ) and from each extreme vertex of TN there is a face of degree 2.
Let us denote by G̃P the dual graph, namely the graph whose vertices are faces of ĜP ,
faces are vertices of ĜP and such that there is one edge between each neighboring faces of
G̃P (which correspond then to vertices of ĜP ).

Lemma 6.4.8 (Dual graph to Tk). There is an isomorphism from G̃P to Tk mapping edges
of type ℓ of G̃P to edges of type ℓ of Tk.

Proof. Since vertices of ĜP are trivalent, faces of G̃P are triangular. Similarly, inner faces
of ĜP have degree 6, and thus inner vertices of G̃P have degree 6. Hence, G̃P is isomorphic
to a polygon H of the planar triangular grid. Since the sequence of degrees of the 3k outer
faces of ĜP is

(2, 4, . . . , 4︸ ︷︷ ︸
k times

, 2, 4, . . . , 4︸ ︷︷ ︸
k times

, 2, 4, . . . , 4︸ ︷︷ ︸
k times

),

the same holds for the sequence of degrees of outer vertices of G̃P . Remark that for each
vertex of degree 4 (resp. 2) in G̃P , the angle of the boundary at the corresponding vertex
in H is π (resp. 5π/3). We deduce that the boundary of the G̃P is isomorphic to the one of
Tk, and thus G̃P is isomorphic to Tk. Let us denote by ζ : E(G̃P ) → Ek the corresponding
bijection between set of edges.
Remark that around every triangle of G̃P the type of the edges is (ℓ, ℓ + 1, ℓ + 2) (this
is true for faces coming from trivalent vertex of GP and true by construction for faces
coming from the blowing up of higher order vertices of ĜP ). We deduce that all edges
with the same type in G̃P are sent through ζ to edges with the same orientation in Tk.
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Up to composing ζ with an internal rotational symmetry of Tk, we can thus assume that
ζ preserves the type of the edges.

Each edge B of G̃P has then a color c(B) and a height h(B) coming from the dual edge of
ĜP . Composing with ζ−1 yields maps C : Ek → N and L : Ek → N with C = c ◦ ζ−1 and
L = h ◦ ζ−1.

Lemma 6.4.9 (Image is a dual hive). The resulting pair of maps (C,L) is a discrete
two-colored dual hive ζ(P ) in H(c(ω), l(ω), N).

Proof. Lemma 6.3.9 and the color rules introduced before in case of blowing-up of even
degree vertices yield that edges around each trivalent vertex of G̃P are colored (0, 0, 0),
(1, 1, 1), (1, 0, 3) or (0, 1,m) in the clockwise order, which translates into the same color
rule around each triangular face of Tk.

It remains to prove that the map L on Ek satisfies the two conditions of Definition 6.4.1.
The sum condition (1) around a triangle is a consequence of Lemma 6.3.7 in case no edge
is colored m, and the direct deduction of the blowing up of vertices of even degree in case
one of the edges is colored m.

The condition (2) is checked case by case. By Lemma 6.3.9 and the definition of L on
edges colored 1 coming from the blowing-up of even vertices, L(e) = L(e′) for any opposite
edges e, e′ of a lozenge with middle edge colored m, yielding the condition (2.a).

Without loss of generality, suppose that e ∈ Ek has type ℓ and let s be a lozenge such that
e is a border edge of type ℓ of s and the opposite edge e′ is a translation of e such that
h(e) ⩾ h(e′) and eℓ+1 ⩽ e′

ℓ+1. Hence, either h(e) = h(e′), eℓ+1 = e′
ℓ+1 − 1 and the middle

edge f of s is of type k = ℓ − 1 or h(e′) = h(e) − 1, e′
ℓ+1 = eℓ+1 and the middle edge f

is of type k = ℓ+ 1. Suppose now that at least one of the edges of the lozenge is colored
m and the middle edge f is not dual to an edge of ĜP coming from blowing-up an even
vertex. Hence, f corresponds to a strip Sf of type k. Moreover, there exist ẽ, ẽ′ ∈ E2

N of
type ℓ with h(ẽ) = L(e) and h(ẽ′) = L(e′), f̃ , f̃ ′ ∈ Sf of type k such that ẽ and f̃ (resp.
ẽ′ and f̃ ′) comes from a same vertex v (resp. v′) of Pv (either directly or after a blowing-up).

Remark that f̃ℓ ⩾ f̃ ′
ℓ for otherwise, in the strip Sf , there would be an edge of type

different from f and labeled 0 or 1 coming from v, which is not possible from Figure 6.10.
Then, if ẽ is of type ℓ and f̃ is of type ℓ − 1 coming from a same triangle of TN , we
resume in Figure 6.12 the relation between f̃ℓ and h(ẽ) depending on the orientation of
the triangle and the colors of the boundary edges (the color and position of f̃ is bold).
Those relations are consequences of Lemma 6.3.9 and blowups of even degree vertices.
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Direct triangle y

zx
x, y, z ̸= m

0

m1

m

10
1

0m

f̃ℓ h(ẽ) + 1 h(ẽ) + 2 h(ẽ) + 1 h(ẽ) + 1

Reversed triangle

y

xz
x, y, z ̸= m

0

1m

1
m0

m

01

f̃ℓ h(ẽ) + 1 h(ẽ) h(ẽ) + 1 h(ẽ)

Figure 6.12: Coordinates of an edge in function of the coloring and height of the next edge
in a triangle (f̃ correspond to the bold edge and ẽ corresponds to the horizontal edge).

From those relation and the fact that f̃ℓ ⩾ f̃ ′
ℓ, we deduce that h(ẽ) ⩾ h(ẽ′), i.e L(e) ⩾ L(e′),

in the case e′
ℓ+1 = eℓ+1 + 1 and that h(ẽ) > h(ẽ′), i.e L(e) > L(e′), if one of the boundary

edge of s different from e is colored m. The case eℓ = e′
ℓ + 1 is done similarly, yielding

always h(ẽ) > h(ẽ′), i.e L(e) > L(e′).
Finally, if the middle edge is coming from the blowing up of an even vertex and is not
colored m, then this edge is necessarily colored 1, and thus e and e′ are colored 0 and
the opposite edges of their lozenge are colored 1. The strict inequality is directly deduced
from construction of L = h ◦ ζ−1 and Lemma 6.3.9 giving the height of edges colored 0 in
an even vertex.
Hence, Tk with the labelling (C,L) is a genuine discrete two-colored dual hive, which we
denote by ζ(P ). The boundary values are directly deduced from the boundary of P , so
that the resulting hive is in H(c(ω), l(ω), N).

Proof of Theorem 6.4.3. Let us construct the reverse bijection. Let H = (C,L) be a
two-colored dual hive in H(c(ω), l(ω), N). We first define the candidate vertex partition
(without the coloring for now) Pv as follows :

• for each triangle face t = (t0, t1, t2) ∈ Tk, with tℓ of type ℓ, with boundary colors in
(0, 0, 0), (1, 1, 1) or (1, 0, 3) (up to a cyclic order), we define a block Bt ⊂ EN with
edges e0, e1, e0, with eℓ of type ℓ, and such that :

h(eℓ) = L(tℓ), eℓℓ+1 = L(tℓ+1) + 1.

• for each long rhombus with boundary u = (s0, t1, . . . , tr, s1, tr+1, . . . , t2r) with si of
type ℓ and ti of type ℓ+ 1 and t1i = s0

i + 1 such that C(s0) = C(s1) = 1, C(ti) = 0,
L(ti) = L(t2r+1−i) = L(t1) − (i − 1) for 1 ⩽ i ⩽ 2r, and which is not included in
an other rhombus satisfying such property, we define a block Bu ⊂ EN with edges
(e0, e1, f1, . . . , f2r) with h(v) = L(v) for v ∈ Bu and

e0
ℓ+1 = L(t1) + 2, e1

ℓ+1 = L(tr), f iℓ+2 = f2r+1−i
ℓ+2 − 1 = e0

ℓ+2 + i, 1 ⩽ i ⩽ r.

Remark that for 1 ⩽ i ⩽ r, f iℓ+2 = f2r+1−i
ℓ+2 − 1 = t(gi), where gi is the edge of type

ℓ+ 2 colored m adjacent to f i or f2r+1−i.

• for each edge s of type ℓ on the boundary of Tk, we define a singleton in Be ⊂ EN
consisting of the unique edge e of type ℓ with h(e) = L(s).
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Moreover, by Lemma 6.4.10 below, edges e, e′ coming from different edges t, t′ ∈ Tk by
the previous constructions are distinct. Let E =

⋃
B∈Pv B. We can thus define a coloring

c on E by setting c(e) = C(t) when e is constructed from t above. By construction and
the property (1) of Definition 6.4.1, the covering Pv satisfies all the properties of Lemma
6.3.9. With the above constructions and the conditions (1) and (2.a) of a two-color dual
hive, we can then check that all the relations from Figure 6.12 is still satisfied when the
bold edge is an element of E .

Define then a relation ∼ on E by saying that e ∼ e′ if e, e′ are coming from a same
edge of Tk through the previous construction, and denote by Pe the set partition coming
from this relation. By the properties of a two-colored dual hive, any long rhombus consid-
ered before of border edges of type ℓ, ℓ+ 1 has its inner middle edges of type ℓ− 1 colored
m, so that none of the triangles inside this long rhombus yields block of Pv through the
first step. Hence, each edge of Tk yields at most 2 edges of E . Remark that an edge of Tk
is either adjacent to two faces or to one face and the boundary of Tk, so that Pe consists
of pairs or singletons, and in the latter case the singleton belongs to two blocks of Pv.
If e ∼ e′, by the above construction c(e) = c(e′), L(e) = L(e′) and e, e′ have the same
type, so that Pe only has admissible pairs (which can be reduced to a singleton). If e ̸= e′

belong to a same block of Pv they come from different edges of Tk and thus {e, e′} ̸∈ Pe.

In view of applying Proposition 6.3.14, it suffices to prove that two pairs of Pe do not
cross. Suppose that B = {e1, e2} and B′ = {e3, e3} are two blocks of Pe. If they are of
same type ℓ, then Lemma 6.4.10 yields that B ∩ SB′ = B′ ∩ SB = ∅. If B are of different
type ℓ and ℓ+ 1, Lemma 6.4.11 yields that the second condition of crossing strips is never
satisfied, and the first condition may only be satisfied in the case (4) of Lemma 6.4.11
where t′ℓ ⩾ tℓ and t′ℓ+1 ⩾ tℓ+1, when e2

ℓ+1 = e3
ℓ+1. But in the latter case, by Definition

6.3.10, edges of type ℓ+ 1 of the strip SB have ℓ+ 1-coordinate strictly smaller than e2
ℓ+1,

so that B′ ∩ SB = ∅. Likewise, edges of the strip SB′ of type ℓ have ℓ + 1-coordinate
strictly larger than min(e3

ℓ+1, e
4
ℓ+1) so that B ∩ SB′ = ∅. Hence, SB and SB′ do not cross.

Pairs of Pe are admissible and any two different pairs B,B′ ∈ Pe do not cross, thus
partition Pe satisfies the properties of Lemma 6.3.11. Finally, by Proposition 6.3.14 ap-
plied to (Pv,Pe), there exists a unique puzzle P such that the corresponding vertex and
edge partitions are respectively Pv and Pe. Denote by χ(H) this puzzle. It is clear from
the above constructions that χ(H) ∈ P (ω) and that χ◦ζ and ζ ◦χ are respectively identity
maps of P (ω) and H(c(ω), l(ω), N).

Lemma 6.4.10 (Same type blocks do not cross). Let t ̸= t′ ∈ Tk of same type ℓ in
blocks of Pv, and suppose without loss of generality that tℓ+1 > t′ℓ+1 or tℓ+1 = t′ℓ+1 and
h(t′) > h(t). Then, if h(t) < h(t′) and tℓ+1 > t′ℓ+1, the edges e1, e2 (resp. e3, e4) of TN
associated to t (resp. t′) satisfy

h(e1) = h(e2) < h(e3) = h(e4),

if h(t) < h(t′) and tℓ+1 = t′ℓ+1,

min(e1
ℓ−1, e

2
ℓ−1) > max(e3

ℓ−1, e
4
ℓ−1)

and if h(t) ⩾ h(t′) and tℓ+1 > t′ℓ+1,

min(e1
ℓ+1, e

2
ℓ+1) > max(e3

ℓ+1, e
4
ℓ+1).
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Proof. Since t and t′ are in blocks of Pv, neither t nor t′ are colored m. If h(t) < h(t′)
and tℓ+1 > t′ℓ+1, L(t) < L(t′) by Remark 6.4.2. Since h(e1) = h(e2) = L(t) and h(e3) =
h(e4) = L(t′), this implies

h(e1) = h(e2) < h(e3) = h(e4).

If tℓ+1 = t′ℓ+1 and h(t′) > h(t), then by Condition (2.c) of Definition 6.4.1, L(t′) > L(t)
except if the middle edge of all lozenges between t and t′ are colored m. In the latter case,
let s (resp. s′) be the edge of type ℓ− 1 such that t, s form a reverse triangle (resp. t′, s′

form a direct triangle). Since sℓ = tℓ + 1 and s′
ℓ = t′ℓ + 1, the inequality t′ℓ > tℓ implies

that s′
ℓ > sℓ. Similarly, since sℓ−1 = tℓ−1 − 1 and s′

ℓ−1 = t′ℓ−1, we have

sℓ−1 = tℓ−1 − 1 = N − tℓ − tℓ+1 − 1 > N − t′ℓ − t′ℓ+1 − 1 ⩾ t′ℓ−1 ⩾ s′
ℓ−1.

Hence, L(s′) ⩽ L(s). Let us introduce the third edge r (resp. r′) of the triangle with
edges s, t (resp. s′, t′). By Figure 6.12 and Condition (1) from Definition 6.4.1, we get
that e3

ℓ−1 = N − e3
ℓ − e3

ℓ+1 = N − L(t′) − L(r′) − 1 = L(s′) and e2
ℓ−1 = N − e2

ℓ − e2
ℓ+1 =

N − L(t) − L(r) = L(s) + 1 and thus e2
ℓ−1 = L(s) + 1 > L(s′) = e3

ℓ−1, so that

e1
ℓ−1 ⩾ e2

ℓ−1 > e3
ℓ−1 ⩾ e4

ℓ−1.

If h(t) ⩾ h(t′) and tℓ+1 > t′ℓ+1, then t′ℓ+2 > tℓ+2. Suppose without loss of generality that
e1
ℓ+1 ⩾ e2

ℓ+1 and e3
ℓ+1 ⩾ e4

ℓ+1. Let us consider the edges s, s′ of type ℓ+ 1 such that (t, s, u)
and (t′, s′, u′) are respectively direct and reverse triangles of Tk so that the corresponding
edge of t and the piece containing the direct triangle is e2 and the corresponding edge
for t′ and the reverse triangle is e3. Since h(s) = tℓ+1 − 1 and sℓ+2 = tℓ+2 + 1 and
h(s′) = t′ℓ+1 − 1 and s′

ℓ+2 = t′ℓ+2, h(s) > h(s′) and s′
ℓ+2 ⩾ sℓ+2, so that L(s) > L(s′)

by Remark 6.4.2. Then, since (t, u, s) is a direct triangle, Figure 6.12, e2
ℓ+1 = L(s) + 1,

except if c(t) = 1, c(s) = 0 and c(u) = m where e2
ℓ+1 = L(s) + 2. Likewise, since

(t′, s′, u′) is a reverse triangle, e3
ℓ+1 = L(s′) + 1 except if c(t) = 1, c(s) = 0, c(u) = m or

c(t) = 0, c(s) = m, c(u) = 1 where e3
ℓ+1 = L(s′). Hence, in any case,

e3
ℓ+1 ⩽ L(s′) + 1 < L(s) + 1 ⩽ e2

ℓ+1

and
e1
ℓ+1, e

2
ℓ+1 > e3

ℓ+1, e
4
ℓ+1.

Lemma 6.4.11 (Different type blocks do not cross). Let t, t′ ∈ Tk be of respective type
ℓ, ℓ+1 yielding edges in E, and denote by e1, e2 (resp. e3, e4) the edges of TN corresponding
to t (resp. t′). Then,

1. if t′ℓ > tℓ and t′ℓ+1 < tℓ+1, then

e1
ℓ = e2

ℓ < e3
ℓ ⩽ e4

ℓ .

2. if t′ℓ < tℓ and t′ℓ+1 ⩾ tℓ+1, then

e3
ℓ ⩽ e4

ℓ < e1
ℓ = e2

ℓ .

3. if t′ℓ ⩽ tℓ and t′ℓ+1 < tℓ+1,

e3
ℓ+1 ⩽ e4

ℓ+1 < e1
ℓ+1 ⩽ e2

ℓ+1.
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4. if t′ℓ ⩾ tℓ and t′ℓ+1 ⩾ tℓ+1,

e1
ℓ+1 ⩽ e2

ℓ+1 ⩽ e3
ℓ+1 = e4

ℓ+1.

Proof. The proof of the four assertions are similar.

1. Suppose that t′ℓ > tℓ and t′ℓ+1 < tℓ+1. Let (t′, s′, r′) and (t′, s′′, r′′) be the reverse
and direct triangles belonging to pieces yielding respectively e3 and e4, with s′, s′′

of type ℓ. Since then e4
ℓ ⩾ e3

ℓ , it suffices to show that e3
ℓ > e2

ℓ . Since s′
ℓ = t′ℓ − 1

and s′
ℓ+1 = t′ℓ+1 + 1, we have s′

ℓ ⩾ tℓ and tℓ+1 ⩾ s′
ℓ+1, so that L(s′) ⩾ L(t). Since

t′ is of type ℓ + 1 not and colored m and (t′, s′, r′) is a reverse triangle, Figure
6.12 and Condition (1) from Definition 6.4.1 yield that either e3

ℓ+2 = L(r′) + 1 and
L(r′) + L(s′) + L(t′) = N − 2 or e3

ℓ+2 = L(r′) and L(r′) + L(s′) + L(t′) = N − 1. In
any case, e3

ℓ+2 = N − 1 − L(t′) − L(s′), so that

e3
ℓ = N−e3

ℓ+1−e3
ℓ+2 = N−L(t′)−(N−1−L(t′)−L(s′)) = L(s′)+1 > L(t) = e2

ℓ = e1
ℓ .

2. Suppose that t′ℓ < tℓ and t′ℓ+1 ⩾ tℓ+1, and let s′ be the edge of type ℓ such that
(t′, s′, r′) is a direct triangle. Since s′

ℓ = t′ℓ and s′
ℓ+1 = t′ℓ+1 + 1, s′

ℓ < tℓ and
s′
ℓ+1 > tℓ+1, so that L(t) > L(s′) by Remark 6.4.2. Since (t′, s′, r′) is a direct triangle,

Figure 6.12 and Condition (1) from Definition 6.4.1 yield by a same reasoning as
above that e4

ℓ+2 ⩾ L(r′) + 1 = N − L(s′) − L(t′), so that, using that e4
ℓ+1 = L(t′),

e4
ℓ = N − e4

ℓ+1 − e4
ℓ+2 ⩽ L(s′) < L(t) = e1

ℓ = e2
ℓ .

3. Suppose that t′ℓ ⩽ tℓ and t′ℓ+1 < tℓ+1, and let s be the edge of type ℓ + 1 such
that (t, s) is part of a direct triangle. Then, sℓ = tℓ and sℓ+1 = tℓ+1 − 1, so that
sℓ ⩾ t′ℓ and sℓ+1 ⩾ t′ℓ+1. We deduce that sℓ+2 ⩽ t′ℓ+2, and thus L(s) ⩾ L(t′). Since
e1
ℓ+1 ⩾ L(s) + 1 by Figure 6.12, we thus have

e3
ℓ+1 = e4

ℓ+1 = L(t′) ⩽ L(s) < e1
ℓ+1 ⩽ eℓ+1.

4. Suppose that t′ℓ ⩾ tℓ and t′ℓ+1 ⩾ tℓ+1, and let s be the edge of type ℓ + 1 such that
(t, s, r) is a reverse triangle. Then, sℓ = tℓ+1 and sℓ+1 = tℓ+1−1. Hence, t′ℓ+1 > sℓ+1
and t′ℓ+2 = N − t′ℓ+1 − t′ℓ ⩽ N − sℓ+1 − 1 − sℓ + 1 ⩽ sℓ+2 and the inequality is strict
except when t′ℓ = tℓ and t′ℓ+1 = sℓ+1. Hence, by Remark 6.4.2 in the case of strict
inequality and Condition (2.b) and (2.c) from Definition 6.4.1, L(t′) > L(s), except
when t′ℓ = tℓ, t

′
ℓ+1 = sℓ+1 and C(r) = m, in which case L(t′) = L(s). In the first

case, by Figure 6.12 we have e2
ℓ+1 ⩽ L(s) + 1 ⩽ L(t′). In the second case, since

C(r) = m we have e2
ℓ+1 = L(s) ⩽ L(t′), so that in any case

e1
ℓ+1 ⩽ e2

ℓ+1 ⩽ e3
ℓ+1 = e4

ℓ+1.

6.5 Color swap
The goal of this combinatorial section is to exhibit a convex body of dimension D =
(n−1)(n−2)

2 having integer points counted by quantum Littlewood-Richardson coefficients,
so that the limit expression (6.2.26) converges to the volume of a polytope. In Section
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6.5.1, we present local configurations in color maps called arrows and hexagons. Section
6.5.2 gives a propagation algorithm for another configuration called a gash. Using these
propagations, we show in Sections 6.5.3 and 6.5.4 that any color map can be reduced to
a simple color map as in Figure 6.20. Section 6.5.5 then extends the reduction defined on
color maps to quasi dual hives, which are more general than dual hives of Definition 6.4.1.

From this section to the end of the chapter, we set k = n + d and ξ = e
iπ
3 . We also

assume that the color maps of dual hives are regular in the sense of Definition 6.5.1.
Definition 6.5.1 (Regular boundaries). A color map C : Ek → {0, 1, 3,m} is regular, or
has regular boundaries, if for every i ∈ {0, 1, 2},

c(i) = (1, . . . , 1︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
n−d times

, 1, . . . , 1︸ ︷︷ ︸
d times

). (6.5.1)

Moreover, we say that a dual hive H = (C,L) is regular if its color map C is.

6.5.1 Arrows and hexagons

Let us start with some definitions on local configurations of edges in Ek.
Definition 6.5.2 (Opening). Let x ∈ Tn. An opening of type l ∈ {0, 1, 2} at x is a pair
of edges (e, e′) ∈ E2

n such that if e = (e1, e2), e′ = (e′
1, e

′
2) with (e1, e

′
1, e2, e

′
2) ∈ T 4

n and
t(e), t(e′) are the types of e and e′,

ei = e′
i = x for some i ∈ {1, 2},

{t(e), t(e′)} = {l − 1, l + 1} and C(e) = C(e′) ∈ {0, 1}.

The color of the opening is defined as the color of edges e and e′.
Consider an opening a = (e, e′) at x of type l and color c ∈ {0, 1}. Let e′′ = e′′(a) be the
edge such that e, e′ are edges of the lozenge with middle edge e′′. The only possible colors
of the edge e′′ are C(e′′) ∈ {0, 1}. If C(e′′) = c, the two triangular faces of the lozenge with
middle edge e′′ have all of their edges colored c. If C(e′′) ̸= c, then there is an opening
a′ of type l and color c at the other endpoint of e′′. Note that there can only be finitely
many such openings before C(e′′) = c.
Definition 6.5.3 (Arrow). Let a = (e, e′) be an opening of type l and color c. Let r ⩾ 0
be the number of successive openings having middle edge e′′ such that C(e′′) ̸= c with
C(e′′) ∈ {0, 1} as in the previous paragraph. An arrow of length r ⩾ 0 at the opening a
is the configuration of edges consisting of the r ⩾ 0 successive pairs of 3 and m lozenges
together with the pair of direct and reverse faces with boundary edges of color c.
See Figure 6.13 for examples of openings and arrows.
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Figure 6.13: First row from left to right : an opening a with color 0 and type 0 at x, the
case C(e′′) = c, the case C(e′′) ̸= c and an arrow of length r = 4. The second row is the
analog for color 1.
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Definition 6.5.4 (ABC hexagons). Let C be a color map and let h be a hexagon, that
is, the union of six triangular faces sharing one vertex in Tk. We say that h is an ABC
hexagon (for the color map C) if the color map C restricted to h is any of the three
configurations in Figure 6.14 up to a rotation.
A rotation of an ABC hexagon h is the replacement of the values of C by the ones obtained
from a rotation of h which preserves the value of C on the boundary ∂h ∩ Ek.
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1

0 1 1
m
00
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1
0

0
1

0

0 0 3
1

m0
0

Figure 6.14: The three types of hexagons : A (left), B (center) and C (right).

Note that type B has three possible rotations whereas A and C only have two. For a
hexagon h, denote Eh the edges of Ek which are in h.

Let A be an arrow of length r ⩾ 1 and type l at an opening with center x. The cen-
ter of the last opening is y ∈ {x+ rξl, x− rξl}. Notice that if the color c of A is 0 (resp.
1), then the hexagon h(y) with center y is of type C (resp. A). Applying a rotation to h(y)
yields an arrow A′ of length r−1 of type l at the same opening with center x. By applying
hexagon rotations to x+ rξl, x+ (r− 1)ξl, . . . , x+ ξl (or x− rξl, x− (r− 1)ξl, . . . , x− ξl)
in this order, one gets an arrow R(A) of length r of type l the same opening with center
x + rξl. We call this sequence of r hexagon rotations the reversal of the arrow A. An
example of arrow reversal is given in Figure 6.15.
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Figure 6.15: Reversal of an arrow of length 4 at x.

6.5.2 Gash propagation

We define a local configuration called a gash in Definition 6.5.5 which one can propagate
in a dual hive. Local propagation rules are given in Definition 6.5.6 and the general prop-
agation algorithm on dual hives is defined in Definition 6.5.7. The goal of the propagation
algorithm is to find rigid lozenges of a dual hive in view of the next section.

Definition 6.5.5 (Gash). Let x ∈ Tk. A gash g with center x = x(g) is the union of the
two edges (x, x− ξ2l), (x+ ξ2l, x) for l ∈ {0, 1, 2} such that

C((x, x− ξ2l)) = 1, C((x+ ξ2l, x)) = 0 if l ∈ {0, 1}
C((x, x− ξ2l)) = 0, C((x+ ξ2l, x)) = 1 if l = 2.

The type of a gash denoted t(g) is defined as the type l ∈ {0, 1, 2} of its edges.



158 CHAPTER 6. PRODUCTS OF CONJUGACY CLASSES

Note that this definition only depends on the color map C of H. Let g be a gash. There
are only six possible configurations given in Figure 6.16 adjacent to g. In this section, we
show that such a gash g can be moved across the color map C using local moves until
reaching configuration (v) or (vi) of Figure 6.16.
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Figure 6.16: The six possible adjacent configurations to a gash of type 2 shown in dashed
edges. The same holds for a gash of other types up to rotations.

Definition 6.5.6 (Gash propagation). Let g be gash of type l with center x.

1. Suppose that g is adjacent to a configuration (i). Let y = x+ ξ4, (resp. y = x+ 1,
y = x+ ξ5) if l = 0, (resp. l = 1, l = 2). We call the propagation of g the gash g′ of
type l at center y.

2. Suppose that g is adjacent to a configuration (ii). Let y = x + ξ5, (resp. y =
x+ ξ, y = x+ 1) if l = 0, (resp. l = 1, l = 2). We call the propagation of g the gash
g′ of type l at center y.

3. Suppose that g is adjacent to a configuration (iii). Let y = x + 1 if l = 1 or l = 2.
We call the propagation of g the gash g′ of type 3 − l at center y.

4. Suppose that g is adjacent to a configuration (iv). Notice that there is a 0 opening
at x and thus an arrow of color 0 at x with type l + 1. Reverting this arrow yields
a configuration (i) adjacent to g and we define the propagation of g to be the gash
g′ of type l as in step (1). See Figure 6.17 for an illustration.
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Figure 6.17: Propagation of a gash g adjacent to a configuration (iv). The arrow of color
0 has been reversed yielding a configuration (i) adjacent to g.

Remark that the only propagation in which the type of the gash changes is (iii). We now
give a general procedure using local propagations from Definition 6.5.6. This procedure
starts from a gash and propagates it until reaching a configuration that is either (v) or
(vi).

Definition 6.5.7 (Propagation algorithm). The propagation algorithm is the following
algorithm.
Input: A color map C and a gash g of type l ∈ {1, 2}.

1. Set g(0) = g, x(0) = x(g), t(0) = t(g).
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2. WHILE g(s) is adjacent to (i), (ii), (iii) or (iv): set g(s+1) to be the propagation of
g(s) with center x(s+1) and type t(s+1).

Proposition 6.5.8 (Propagation algorithm is correct). Let g be a gash of type 2 in Tk.
The propagation algorithm terminates at a gash g̃ adjacent to configuration of type (v) or
(vi).

For the proof of Proposition 6.5.8, we need Lemma 6.5.9 which shows that any triangular
region having two of its sides with edges colored c ∈ {0, 1} has all its edges colored c.

Lemma 6.5.9 (Regular equilateral triangles). Let C : Ek → {0, 1, 3,m} be a color map
on edges of Tk. Let R be any subset of edges of Ek such that ∂R is an equilateral triangle
of size s ⩾ 1. Let c ∈ {0, 1} and assume that two boundaries of R have edges e which are
all colored c. Then, every edge in R is colored c.

Proof. Let us first show a general fact about a shape described below that we call a cup.
For r ⩾ 1, we call a cup of length r and type i the union of r consecutive type i edges
together with one edge of type i+1, respectively of type i−1, forming an angle of 2π

3 with
type i edge with maximal and minimal heights. See Figure 6.18 for an example. Suppose
that edges of a cup are all colored c ∈ {0, 1}. Let us show by induction on r that the only
possible color of edges in the convex hull of the cup is c.

1 1 1 1 1 1 1 1
1 1

Figure 6.18: A cup of length r = 8 and type 0 with color c = 1. Edges in the convex hull
of the cup are dotted

Two adjacent edges of the cup of different types form an opening of color c. One checks
that the arrow at this opening has length zero for otherwise all the r edges of type i would
belong to some non-rigid lozenges with opposite edges of type i (resp. i − 1) colored c
(resp. 1 − c) which is incompatible with the color c of the other opening of the cup. Thus,
the arrow has zero length. Then, the rest of the convex hull is a cup of length r− 1 which
completes the proof of cup completion by induction.

Let us consider the region R of the statement, and suppose that the boundary of type
i − 1 and i + 1 of R are colored c. The corner of the triangular face between boundaries
of type i − 1 and i + 1 has all of its edges colored c, as two of them lie on the boundary
of R. This induces a cup of length 1 and type i having edges of color c. By the previous
reasoning, its only color completion consists of edges of color c. Each completion of a cup
of size r with r < s yields a cup of size r + 1 with edges colored c. Filling cups of sizes
1, 2, . . . , s − 1 with edges of color c fills then R with edges colored c and thus proves the
claim.

Corollary 6.5.10 (Corners of regular boundaries). Let C : Ek → {0, 1, 3,m} be a regular
color map. Then, the three equilateral regions of side length d each containing an extremal
vertex of Tk have all of their edges colored 1.

Proof. Notice that the regularity of the color map C implies that each such triangular
region of side length d has two boundaries which lie on ∂T (0)

k ∪ ∂T (1)
k ∪ ∂T (2)

k having edges
colored 1. Applying Lemma 6.5.9 yields the result.
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Proof of Proposition 6.5.8. At each step of the gash propagation, one has that x(s+1)
0 <

x
(s)
0 or x(s+1)

1 > x
(s)
1 and t(s) ∈ {1, 2} which implies that the while loop terminates on a

last gash g(∞). Since g(∞) is the last gash, it is of type 1 with center x(∞) ∈ ∂T
(1)
k . As

the boundary ∂T
(1)
k is regular, the edge of color 1 in g(∞) is the edge with height n so

that x(∞)
1 = n, see Figure 6.19. Moreover, by Corollary 6.5.10, the equilateral triangle

Rd ⊂ Ek of length d having one of its boundaries between x(∞) and (n, 0) has all of its
edges colored 1.

Assume for the sake of contradiction that g(∞) is not adjacent to a configuration (v)
or (vi). Consider the last (iii) configuration encountered before reaching ∂T (1)

k having a
gash g′ of type 1. Note that such a configuration exists as all other configurations preserve
the type of the gash during propagation of Definition 6.5.6. Consider the last gash g with
center x resulting from a propagation of type (i) after g′ with the convention that g = g′

if no configuration (i) or (iv) happen after g′ (recall that configuration (iv) reduces to a
propagation of type (i), see step (4) of Definition 6.5.6). Propagations (g(s), s ⩾ 0) after
g = g(0) are then of type (ii) so that for s ⩾ 0, x(s+1)

1 = x
(s)
1 and x

(s+1)
0 = x

(s)
0 − 1. Since

x(∞) ∈ Rd, we would have x ∈ Rd and the edge e′ ∈ Ek with origin x + ξ5 of type 0
and color 0 in the last (i) configuration before g (or in the last configuration (iii) if no
such configuration (i) exists) would have both its endpoints in Rd which contradicts the
fact that edges in Rd are all colored 1. See Figure 6.19 for an illustration of the above
argument.
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Figure 6.19: The 0 colored edge e′ in the last configuration (i) would be in Rd.

Remark 6.5.11 (Type 1 propagation algorithm). Note that the argument given in the
proof of Proposition 6.5.8 remains valid in the case of a type 1 gash g with center x such
that the type 0 edge with origin x+ ξ5 is colored 0.

6.5.3 Color swap path

In Proposition 6.5.8, we showed that any gash g of type 2 can be propagated to find a
configuration (v) or (vi) having a rigid lozenge in it. In this section, we show that via
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hexagon rotations of Definition 6.5.4, one can bring this rigid lozenge at the location of
x = x(g).

Lemma 6.5.12 (Back propagation). Let g be gash with center x adjacent to a configu-
ration (i, ii) or (iii) and suppose that its propagation g′ with center x′ is adjacent to a
configuration (v) or (vi). Then, the hexagon h′ with center x′ is an ABC hexagon. More-
over, using a hexagon rotation of h′, the hexagon h with center x is an ABC hexagon.

Proof. One can check that the statement of Lemma 6.5.12 holds in all possible cases of
configurations, see Figure 6.14.

Proposition 6.5.13 (Gash reduction). Let C be a color map and let g be a gash of type 2
in C. Let g̃ = g(s) for some s ⩾ 0 be the last gash as in Proposition 6.5.8. Using hexagon
rotations of ABC hexagons with centers given by x(s), x(s−1), . . . , x(0) in this order, C can
be mapped to a color map C ′ such that g is a gash for C ′ adjacent to a configuration (v)
or (vi).

Proof. Applying Lemma 6.5.12 to every center x(s), x(s−1), . . . , x(1) in this order yields the
desired configuration.

Remark 6.5.14 (Reduction of a type 1 gash). As in Remark 6.5.11, the result of Propo-
sition 6.5.13 still holds if one considers g of type 1 with center x such that the type 0 edge
with origin x+ ξ5 is colored 0.

6.5.4 Color map reduction

Recall that we only consider regular boundary conditions for Tk that is, the color map
C : Ek → {0, 1, 3,m} is given by 1 . . . 10 . . . 01 . . . 1 on every boundary of Tk, where there
are d ones on each side of the n − d zeros. The goal of this section is to show that
any regular color map can be mapped via hexagon rotations to the simple color map of
Definition 6.5.15.

Definition 6.5.15 (Simple color map). Let n ⩾ d ⩾ 0 and k = n + d. The color map
C0 : Ek → {0, 1, 3,m} called the simple color map is defined by

1. C0 is regular and thus C0(e) = 1 for every edge e ∈ Ek in any corner equilateral
triangle of side length d in Tk as in Corollary 6.5.10,

2. C0(e) = 1 for every edge e ∈ Ek in the lozenge of side length d in Tk having outer
vertices nξ, nξ + dξ, nξ + d, nξ + dξ5,

3. C0(e) = 0 for every edge e ∈ Ek in the equilateral triangle having outer vertices d, n
and d+ nξ,

4. C0(e) = m, respectively C0(e) = 3 for every edge e ∈ Ek of type 0 with origin x such
that d ⩽ x0 ⩽ n − 1 and 1 ⩽ x1 ⩽ d, respectively for every edge e ∈ Ek of type 0
with origin y such that 0 ⩽ y0 ⩽ d− 1 and d+ 1 ⩽ y1 ⩽ n.

Figure 6.20 shows an example of the simple color map C0 for k = 5 and d = 2.
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Figure 6.20: The color map C0 for k = 5 and d = 2. The label 2 corresponds to the label
m. Uncolored edges have color 3 (picture done with the module Knutson-Tao puzzles of
Sage [The20]).

Proposition 6.5.16 (Color map reduction). Let C : Ek → {0, 1, 3,m} be a regular color
map. Using hexagon rotations, one can map C to C0, where C0 is the simple color map
of Definition 6.5.15.

Proof. Let {x(s), 1 ⩽ s ⩽ d(k − d)} be the vertices in Tk ordered such that for 1 ⩽ s ⩽
d(k − d), s− 1 = s1d+ s2 with s1 ⩾ 0 and 0 ⩽ s2 ⩽ d− 1,

x(s) = (d+ s1)ξ + s2ξ
5.

Let C be a regular color map on Ek. Let us show by induction on s that using hexagon
rotations, C can be mapped to a regular color map C(s) such that the type 0 edges with
origins x(1) + 1, . . . , x(s) + 1 are colored m. We first prove it for s = 1. Notice that since
C is regular, there is a gash g(1) of type 2 with center x(1). Applying Proposition 6.5.13
yields that using hexagon rotations, C can be mapped to C(1) such that g(1) is adjacent
to a configuration (v) or (vi). Since C(1) is regular, this configuration is necessarily (v)
which implies that the edge of type 0 with origin x(1) + 1 is colored m.
Assume that C(s) is a color map such that the type 0 edges with origins x(1)+1, . . . , x(s)+1
are colored m. Notice that there is a 01 opening at x(s+1) that is, the edges (x(s+1), x(s+1)+
ξ) and (x(s+1), x(s+1) + ξ5) are colored respectively 0 and 1. A 01 opening has only three
possible completions showed in Figure 6.21.
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Figure 6.21: A 01 opening (left) and its possible completions

In the case of the first completion, the color map C(s+1) = C(s) satisfies the desired
conditions. In the case of the third and fourth completion, there is a gash g(s+1) of type 2
and 1 respectively with center x(s+1) + 1. Applying Proposition 6.5.13 and Remark 6.5.14
respectively shows that using hexagon rotations along the propagation path started from
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g(s+1), the latter is adjacent to a configuration (v) or (vi). Note that rotations in this
propagation path do not affect edges colored m with origins x(1) + 1, . . . , x(s) + 1 thanks
to the above ordering. Using a hexagon rotation for the hexagon with center x(s+1) + 1
yields a color map C(s+1) such that the type 0 edges with origins x(0) + 1, . . . , x(s+1) + 1
are colored m and ends the induction. Therefore, C is equivalent up to hexagon rotations
to the color map where type 0 edges with origins x(0) + 1, . . . , x(d(k−d)) + 1 are colored m.
From this configuration, there is only one possible color map to complete the rest of the
hive Ek which is the simple color map C0.

Since the number of pieces of each type is preserved under hexagon rotations, one de-
rives the following enumerations (only the enumeration of edges colored m will be used
afterwards).

Corollary 6.5.17 (Tiles enumeration). Let H be a dual hive with regular boundaries
associated to integers n and d. Let hc(H), respectively, sc(H), be the number of m,
respectively 3 colored edges inside H. Then,

hc(H) = d(n− d) = sc(H). (6.5.2)

Moreover, for i ∈ {0, 1}, denote nt(i)(H), respectively st(i)(H), the number of direct,
respectively reversed, triangular pieces of size 1 with color i on each side. Then,

nt(0)(H) = (n− d)(n− d+ 1)
2 , st(0)(H) = (n− d)(n− d− 1)

2 ,

nt(1)(H) = d(2d+ 1) and st(1)(H) = d(2d− 1).

6.5.5 Quasi dual hives

The goal of this section is to extend hexagon rotations to hives. As of now, hexagon
rotations map one color map to another. To also change label maps, we need to relax the
inequality constraints of Definition 6.4.1 leading to quasi hives of Definition 6.5.20. From
this section to the end, we view regular dual hives of Tn+d as in the discrete hexagon Rd,n,
see Definitions 6.5.18, 6.5.19 and Figure 6.22 below.

Definition 6.5.18 (Hexagonal dual hives). Let n, d ⩾ 1. Denote En,d = {{u, v} ∈ R2
d,n |

d(u, v) = 1} the set of edges of the discrete hexagon Rd,n. A hexagon dual hive is a pair
of maps (C,L), C : En,d → {0, 1, 3,m} and L : En,d → 1

NZ such that NL(.) satisfies the
conditions of Definition 6.4.1 restricted to edges e ∈ En,d.

Definition 6.5.19 (Boundary value of a hexagonal dual hives). Define the following
subsets of En,d for l ∈ {0, 1, 2}.

∂(l,l)En,d := {e ∈ En,d | e is of type l and el−1 = 0}
∂(l,l+1)En,d := {e ∈ En,d | e is of type l and el−1 = n}.

The boundary value

[(c(0,0), c(1,1), c(2,2), c(0,1), c(1,2), c(2,0)), (ℓ(0,0), ℓ(1,1), ℓ(2,2), ℓ(0,1), ℓ(1,2), ℓ(2,0))]

of a hexagonal dual hive is the restriction of (C,L) to ∂En,d where

• c(l,l) ∈ {0, 1, 3,m}n−d (resp. c(l,l+1) ∈ {0, 1, 3,m}d) is the restriction of C to ∂(l,l)En,d
(resp. ∂(l,l+1)En,d ),
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• ℓ(l,l) ∈ ( 1
NN)d (resp. ℓ(l,l+1) ∈ ( 1

NN)d) is the restriction of L(.) to ∂(l,l)En,d (resp.
∂(l,l+1)En,d).

For (c, l) = (c(0,0), c(1,1), c(2,2), c(0,1), c(1,2), c(2,0), ℓ(0,0), ℓ(1,1), ℓ(2,2), ℓ(0,1), ℓ(1,2), ℓ(2,0)) an ele-
ment in {0, 1}3(n−d) × {0, 1}3d × ( 1

NN)3(n−d) × ( 1
NN)3d, we denote by Hhex(c, l) the set of

hexagonal dual hives with boundary value (c, l).

Let (λ, µ, ν) be partitions of length n with first part smaller than N−n such that |λ|+|µ| =
|ν| +Nd and such that min(λn, µn, N − n− ν1) ⩾ d− 1. Then, the associated boundary
labels (l(0), l(1), l(2)) defined in Definition 6.4.1 on Tn+d are given by

l(0) = (0, . . . , d− 1, N − n− ν1, N − n− ν2 + 1, . . . ,
N − νn−d − d− 1, N − νn−d+1 − d, . . . , N − νn − 1)

l(1) = (0, . . . , d− 1, µn, µn−1 + 1, . . . , µd+1 + n− d− 1, µd + n− d, . . . , µ1 + n− 1)
l(2) = (0, . . . , d− 1, λn, λn−1 + 1, . . . , λd+1 + n− d− 1, λd + n− d, . . . , λ1 + n− 1)

so that the associated boundary colors (c(0), c(1), c(2)) are regular in the sense of Definition
6.5.1 which means that on each boundary of Tn+d, the d first and last edges are colored 1
and the remaining n−d edges are colored 0. By Lemma 6.5.10, any dual hive H = (C,L) ∈
H(λ, µ, ν,N) with regular boundary conditions has every of its equilateral triangles of size d
anchored in a corner of Tn+d colored 1. Each of these triangular regions have one boundary
with labels equal to (0, . . . , d− 1). The corresponding region in the puzzle yields a unique
position of the corresponding triangular pieces with edge colors (1, 1, 1) and this unique
configuration gives labels to the third boundary edge of the region. Let l̃(0), l̃(1), l̃(2) be the
respective labels of edges in ∂(0,1)En,d, ∂

(1,2)En,d, ∂
(2,0)En,d. Then, reading decreasingly

with respect to edges heights h(e), these labels are given by the following (see Figure 6.22
below),

l̃(0) = (N − n− λd + d− 1, N − n− λd+1 + d, . . . , N − n− λ1), (6.5.3)
l̃(1) = (N − n− µd + d− 1, N − n− µd+1 + d, . . . , N − n− µ1), (6.5.4)
l̃(2) = (νn−d+1 + d− 1, . . . , νn−1 + 1, νn). (6.5.5)

In this section, we now view regular dual hives H = (C,L) on Tn+d as hexagonal dual
hives by restricting C and L to En,d. By the above, the boundary conditions on En,d are
given by

c(l,l) = (0, . . . , 0), c(l,l+1) = (1, . . . , 1), ℓ(l,l) = 1
N
L|∂(l,l)En,d

, ℓ(l,l+1) = 1
N
l̃(l). (6.5.6)

for l ∈ {0, 1, 2}. We write Hhex(λ, µ, ν,N) for the set of hexagonal dual hives having
boundary colors and labels given by (6.5.6) coming from restriction of dual hives on Tn+d.
This restriction

H(λ, µ, ν,N) → Hhex(λ, µ, ν,N) (6.5.7)

is a bijection where the inverse map is given by extending C from the hexagon Rd,n to the
triangle Tn+d setting C(e) = 1 for e ∈ En+d\En,d and completing the labels L in the unique
possible way in corner triangles. In this section, we now view dual hives in the hexagon
Rd,n and we will omit the subscript writing H(λ, µ, ν,N) for notation convenience.

Definition 6.5.20 (Quasi label map, quasi dual hive). Let C : En,d → {0, 1, 3,m} be
a color map and N ⩾ 1. A quasi label map is a map L : En,d → 1

NZ such that NL(.)
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N − d− νn−d − 1
N − n− ν1

d− 1
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d− 1
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µd+1 + n− d− 1
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N − n− µ1

N − n− λd + d− 1 N − n− λ1

∂(1,2) ∂(2,0)

∂(0,1)

∂(2,2) ∂(1,1)

∂(0,0)

Figure 6.22: The restriction of a regular dual hive on En+d to the hexagon En,d and
induced boundary value for the label map. Blue labels are determined by the unique label
map on each triangular corner. Multiplying edge labels by 1

N yields boundary conditions
in Hhex(λ, µ, ν,N).

satisfying the equality conditions of Definition 6.4.1, that is, equality condition on every
triangular face and rigid lozenges with respect to the color map C, and boundary values
on ∂En,d given by the corresponding two-colored dual hives. Denote L̃C(λ, µ, ν,N) the set
of such label maps.
A quasi dual hive is the data of a color map C and a quasi label map L. We denote by
H̃(λ, µ, ν,N) the set of quasi dual hives with boundary conditions (λ, µ, ν).

The difference with label maps of dual hives is that one does not impose the inequality
constraints of Definition 6.4.1 inside the hexagonal region En,d. Note that dual two-colored
hives are in particular quasi dual hives that is, H(λ, µ, ν,N) ⊂ H̃(λ, µ, ν,N).

Lemma 6.5.21 (Boundary value determine interior). Let H = (C,L) be a quasi dual
hive and h an ABC hexagon for its color map C. Then, the values of L on Eo

h, the set
of interior edges of h, are uniquely determined by the values of L on boundary edges of h
and by the position of the rigid lozenge in h. Moreover, the values of L on Eo

h are affine
combinations of the values of L on boundary edges of h.

Proof. Suppose that the values of L on ∂h are given by l1, . . . , l6 and values on Eo
h by

l7, . . . , l12. We will do the proof for a type A hexagon and the other types B and C can
be treated using similar arguments. Without loss of generality up to some permutation of
the indexes suppose that C(e7) = m, see Figure 6.23.
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l4

l5

l6

l1

l2

l3 l10 l11

l12

l7l8

l9

Figure 6.23: Labels of edges in h a type A hexagon.

By the equality conditions on opposite sides of the rigid lozenge, one has l12 = l1 and
l8 = l6. Let us show that the values l7, l9, l10, l11 are uniquely determined in the region.
Writing equality conditions on the five triangular faces gives

l9 + l8 + l2 = 1 − 1
N

l10 + l9 + l3 = 1 − 2
N

l11 + l10 + l4 = 1 − 1
N

l12 + l11 + l5 = 1 − 2
N

l12 + l7 + l6 = 1 − 1
N

which implies
l1 + l3 + l5 = l2 + l4 + l6 − 2

N
. (6.5.8)

Suppose that the former holds. The fourth equations of the system is redundant with the
others and (6.5.8) so that l7, l8, l9, l10, l11, l12 is solution to the invertible system

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1





l7
l8
l9
l10
l11
l12


=



1 − 1
N − l1 − l6
l6

1 − 1
N − l2 − l6

1 − 2
N − l3

1 − 1
N − l4
l1


. (6.5.9)

The labels on the inner edges are thus uniquely determined as linear combinations of the
labels on the outer edges.

We now give a definition of hexagon rotations that incorporates the label map of a quasi
hive.

Definition 6.5.22 (Rotation map). Let C,C ′ be two color maps that differ by a hexagon
rotation h → h′ that is, C ′(e) = C(rot(e)) where rot : En,d → En,d is the permutation of
edges induces by the rotation mapping h to h′. Define

Rot[C → C ′] : L̃C(λ, µ, ν,N) → L̃C
′(λ, µ, ν,N) (6.5.10)

L 7→ Rot[C → C ′](L) = L′ (6.5.11)

by setting L′(e) = L(e) for e ∈ En,d \Eo
h and extending L′ to Eo

h = Eo
h′ by Lemma 6.5.21.
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For notation convenience, we will call a hexagon rotation the image of a map of Definition
6.5.22 for some ABC hexagon h inside a quasi hive.

Lemma 6.5.23 (Rotation is affine bijection). Let C,C ′ be two color maps that differ by
a hexagon rotation. The map R[C → C ′] : L̃C(λ, µ, ν,N) → L̃C

′(λ, µ, ν,N) is an affine
bijection with coefficients in Z[λi, µi, νi, 1/N ] and whose inverse is R[C ′ → C].

Proof. For every edge e not interior to h, one has L′(e) = L(e). In particular, L′(e) = L(e)
for e ∈ ∂h. Since the matrix of (6.5.9) has integer coefficients and is lower triangular, the
values {L′(e), e ∈ Eo

h} are integer combinations of the values {L(e) = L′(e), e ∈ ∂h} and
1
NZ.

Figure 6.24 shows an example of a hexagon rotation and the corresponding affine map
L 7→ L′.

l4

l5

l6

l1

l2

l3 l10 l11

l12

l7l8

l9

l4

l5

l6

l1

l2

l3 l′10 l′11

l′12

l′7l′8

l′9

Figure 6.24: Action of a rotation on labels of inner edges.

Using face summation constraints together with equality constraints in the rigid lozenge
in h′ one has

l′9 = l4, l′7 = 1 − 1
N

− l6 − l′12 = 1
N

+ l3 + l5 − l6,

l′11 = l3, l′8 = 1 − 2
N

− l1 − l′7 = 1
N

+ l3 + l5 − l6,

l′12 = 1 − 2
N

− l3 − l5, l′10 = 1 − 1
N

− l4 − l′3.

which is a affine combination of values of L with integer coefficients.

For two color maps C, C ′ that differ by more than one hexagon rotation, we denote
Rot[C → C ′] the composition of maps in Definition 6.5.22 for each hexagon rotation
needed to go from C to C0 and then from C0 to C ′ where the existence of such paths was
given by Proposition 6.5.16. Note that there might be multiple rotation paths from C to
C ′ so that such a map is not unique.

Let I ⊂ En,d be the set of edges of En,d that are not in a rigid lozenge of C0 except
the edges of type 2 between a rigid lozenge and a triangular face with colors (0, 0, 0) and
edges of type 1 between a rigid lozenge and a triangular face with colors (1, 1, 1), see Fig-
ure 6.25 below for an example. Denote I0 the edges of I of type 0 where we remove the
east-most such edge on each row. By a counting argument, there are D = (n−1)(n−2)

2 such
edges so that I0 = (e1, . . . , eD).
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Lemma 6.5.24 (Simple quasi hive). For any z = (z1, . . . , zD) ∈
(

1
NZ

)D
, there exists a

unique label map ΦC0(z) ∈ LC0(λ, µ, ν,N) such that for all 1 ⩽ i ⩽ D: ΦC0(z)(ei) = zi.
Moreover, for all 1 ⩽ i ⩽ D, ΦC0(z)(ei) is given by an affine combination with integer
coefficients of (z1, . . . , zD, λ, µ, ν,

1
N ).

e1 e2 e3

e4 e5

e7

e12

e14 e15

e6

e8 e9

e10 e11

e13

Figure 6.25: The region I for n = 7 and d = 3. I0 = {ei, 1 ⩽ i ⩽ 15 = D}. Dashed edges
are edges of type 0 in I \ I0.

Proof. Let L : ∂En,d∪I0 → 1
NZ be a function satisfying the boundary condition (λ, µ, ν,N)

as in (6.5.6). We will show that L can be extended to a quasi label En,d in a unique way.
For any edge of type 2 part of an rigid lozenge, there exists an edge e∂(e) ∈ ∂En,d of the
same type obtained by translation of e by a multiple of ei

2π
3 . Likewise, for any edge of type

1 part of an rigid lozenge, there exists an edge e∂(e) ∈ ∂En,d of the same type obtained by
translation of e by a multiple of ei

π
3 . Assign L(e) = L(e∂(e)) for each such edge e. By the

equality condition on opposite edges of rigid lozenges, any quasi label map has the same
values on these edges.

It remains to extend L to edges e ∈ I. The values of ∂I are already determined uniquely
by the boundary conditions. Set L(ei) = zi for 1 ⩽ i ⩽ D. We call a band the following
configuration of adjacent faces where the west-most triangular face has both its edges of
type 0 and 2 labeled, the east-most triangular face has its type 1 edge labeled and all
other faces in between have their type 0 edge labeled.

|
1|

|
32

|
54

|
76

| | | 8

|

Figure 6.26: A band of size four. Marked edges are the already labeled edges. The labels of
other edges are determined in the order of the red numbers by face summation constraints.

We claim that there in a unique labeling of the edges in the band such that the face
summation constraints hold. The west-most face of the band has two of its three edges
labeled so that the third label is determined uniquely. The south pointing triangular face
east to it has two out of three edges labeled so that the third one is also fixed. By induc-
tively propagating east, one labels the edges of the band. Note that the label of the last
east-most edge of type 0 is determined. This is why we do not require to fix the values of
type 0 edges in I \ I0.
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The previous paragraph shows that one can extend L to all edges in the south most
band of I. Notice then that the region above is also a band. By induction, one extends
L to the n − d south most bands of I. The remaining region consists of bands turned
upside down which are also uniquely determined by the same reasoning. The resulting
map L on En,d satisfies the face summation constraints so that L ∈ L̃C0(λ, µ, ν,N). Since
the band completions are unique at each step, the labels of any other quasi label map
L′ ∈ L̃C0(λ, µ, ν,N) with same values on I0 would agree with L.

Definition 6.5.25 (Label map associated to edge coordinates). Let us define ΦC0(z) ∈
LC0(λ, µ, ν) to be the unique label map constructed in Lemma 6.5.24 from specifying edge
coordinates z ∈

(
1
NZ

)D
on I0. Let C : En,d → {0, 1, 3,m} be any color map and let

D = (n− 1)(n− 2)/2. Define the following map

ΦC :
( 1
N

Z
)D

→ L̃C(λ, µ, ν,N)

z = (z1, . . . , zD) 7→ ΦC(z) = Rot[C0 → C](ΦC0(z)).

Proposition 6.5.26 (Quasi hive structure). The map ΦC of Definition 6.5.25 is bijective.
Moreover, for any z ∈

(
1
NZ

)D
and edge e ∈ En,d , ΦC(z)(e) is an affine combination of

(z1, . . . , zD, λ, µ, ν,
1
N ) with integer coefficients.

Proof. The map ΦC is the composition of two bijections : z 7→ ΦC0(z) ∈ LC0(λ, µ, ν,N)
and L 7→ Rot[C0 → C](L) which are both affine in (z1, . . . , zD, λ, µ, ν,

1
N ) by Lemma 6.5.23

and Lemma 6.5.24. Its inverse is given by (ΦC)−1(L) = Rot[C0 → C](L)|I0 where to a
label map L ∈ LC0(λ, µ, ν,N), L|I0 = (L(e1), . . . , L(eD)) are the labels of the edges in I0.

So far we have defined the mapsRot[C → C ′] and ΦC from L̃C(λ, µ, ν,N) → L̃C
′(λ, µ, ν,N)

and
(

1
NZ

)D
→ L̃C(λ, µ, ν,N) respectively. We will now extend their definitions to quasi

hives.

Definition 6.5.27 (Extension to dual hives). Let C,C ′ be two color maps. We extend
the maps Rot[C → C ′] and ΦC of Definitions 6.5.22 and 6.5.25 to quasi hives by

Rot[C → C ′] : H̃C(λ, µ, ν,N) → H̃C′(λ, µ, ν,N) (6.5.12)
H = (C,L) 7→ Rot[C → C ′](H) = (C ′, Rot[C → C ′](L)), (6.5.13)

and

ΦC :
( 1
N

Z
)D

→ H̃C(λ, µ, ν,N) (6.5.14)

z = (z1, . . . , zD) 7→ (C,ΦC(z)). (6.5.15)

6.6 Convergence to a volume of hives

The goal of this section is to show that the volume function J [γ|α, β] from Theorem 6.2.8
can be expressed as volumes of the polytopes defined in Section 6.1. Section 6.6.1 in-
troduces a limiting object for dual hives and Section 6.6.2 shows the convergence of the
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volume function to the volumes of limit dual hives. Section 6.6.3 establishes the link be-
tween limit dual hives and hives P gα,β,γ of Definition 6.1.4. The proofs of Theorem 6.1.5
and Corollary 6.1.6 are then presented in Section 6.6.4.

Since dP[γ+2r|α+r, β+r] = dP[γ|α, β] for r > 0, assume in this section without loss of gen-
erality that α, β, γ ∈ Hreg are such that αn, βn > 0 and γ1 < 1. In particular, if λN , µN , νN
are such that 1

N λN → α, 1
N µN → β, 1

N νN → γ, then min((λN )n, (µN )n, N − n− (νN )1) >
d + 1 for N large enough. Hence, we will assume in this section that the hives with
boundary (λN , µN , νN ) are regular in the sense of (6.5.6), see Figure 6.22.

6.6.1 Limit dual hives

This section introduces limit dual hives which will be linked to the limit of quantum
Littlewood-Richardson coefficients of Theorem 6.2.8.

Definition 6.6.1 (Limit dual hive). For α, β, γ ∈ (R⩾0)3, the limit dual hive H(α, β, γ,∞)
is the set of pairs (C,L) on the hexagon edges En,d such that :

1. C : En,d → {0, 1, 3,m} is a color map,

2. L : En,d → R⩾0 is the label map satisfying

(a) L(e1) + L(e2) + L(e3) = 1 for every triangular face of Fk,
(b) if e, e′ are edges of same type on the boundary of a same lozenge f ,

i. L(e) = L(e′) if the middle edge of f is colored m,
ii. L(e) ⩾ L(e′) if h(e) > h(e′).

(c) The values of L on ∂En,d are given by (α, β, γ) so that, sorted in decreasing
height of edges, see Figure 6.27 below.

ℓ(0,1) = (1 − αd, . . . , 1 − α1), ℓ(2,2) = (αd+1, . . . , αn)
ℓ(2,0) = (1 − βd, . . . , 1 − β1), ℓ(1,1) = (βn, . . . , βd+1)
ℓ(1,2) = (γn, . . . , γn−d+1), ℓ(2,2) = (1 − γn−d, . . . , 1 − γ1).

•

•

•

•

•

••

•

•

•

•

•

• •

• •

• •

αn

αd+1

1− γn−d 1− γ1

βn

βd+1

γn

γn−d+1

1− βd

1− β1

1− αd 1− α1

∂(1,2) ∂(2,0)

∂(0,1)

∂(2,2) ∂(1,1)

∂(0,0)

Figure 6.27: Boundary labels for limit hives in H(α, β, γ,∞).
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As in the discrete case, if C is a color map, we denote by HC(λ, µ, ν,∞) ⊂ H(λ, µ, ν,∞)
the subset of limit dual hives of having color map C. As in the previous section, we denote
by H̃(λ, µ, ν,∞) the set of pairs (C,L) as above where we remove the inequality conditions
(2.b.ii) on L. Let us denote these inequality constraints by Ineq(n).

Remark 6.6.2 (Maps ΦC and Rot on limit dual hives). Note that Lemmas 6.5.21, 6.5.23
and 6.5.24 hold for limit quasi dual hives H = (C,L) ∈ H̃(λ, µ, ν,∞) extending z ∈(

1
NZ

)D
to z ∈ RD. Using the same construction as in Section 6.5, we define Rot[C →

C ′] : H̃C(λ, µ, ν,∞) → H̃C′(λ, µ, ν,∞) and ΦC : RD → H̃C(λ, µ, ν,∞) which are affine
bijections with coefficients in Z[α, β, γ] obtained by setting 1

N = 0.

6.6.2 Convergence to a volume

The goal of this part is to prove Proposition 6.6.3 which expresses the limit quantum
cohomology coefficients as the volume involving limit dual hives. The proof relies on
Lemma 6.6.4 and Lemma 6.6.6 below.

Proposition 6.6.3 (Convergence to volume of dual hives).

lim
n→∞

N−DcνN ,dλN ,µN
=
∑
C

Vol
(
u ∈ RD,ΦC [u] ∈ HC(α, β, γ,∞)

)
. (6.6.1)

Recall from Corollary 6.4.4 that

N−DcνN ,dλN ,µN
= N−D|H(λN , µN , νN , N)| = N−D|H̃(λN , µN , νN , N) ∩ Ineq(n)| (6.6.2)

=
∑
C

∫
RD

∑
z∈( 1

N
Z)D:ΦC(z)∈H̃(λN ,µN ,νN ,N)∩Ineq(n)

1(u){
z+[− 1

N
, 1
N )D

}du. (6.6.3)

Lemma 6.6.4 (Pointwise convergence). For any color map C and N ⩾ 1, let us define

fCN : RD → R

u 7→
∑

z∈( 1
N
Z)D:ΦC(z)∈H̃(λN ,µN ,νN ,N)∩Ineq(n)

1(u){
z+[− 1

N
, 1
N )D

}.
Recall that 1

N λN = α + o(1), 1
N µN = β + o(1) and 1

N νN = γ + o(1) as N → +∞. Then,
for almost all u ∈ RD with respect to the Lebesgue measure:

lim
N→∞

fCN (u) = 1(u){ΦC [u]∈HC(α,β,γ,∞)}. (6.6.4)

Remark 6.6.5. Note that a priori, ΦC [u] ∈ H̃C(α, β, γ,∞) is a label map such that (C,L)
is a limit hive of Definition 6.6.1 without the inequality constraints. Here, the right hand
side is more restrictive as it requires that (C,ΦC [u]) ∈ HC(α, β, γ,∞) = H̃C(α, β, γ,∞) ∩
Ineq(n), where Ineq(n) denotes the inequality constraints (2bii) of Definition 6.6.1.

Proof. Take u such that ΦC [u] in the interior of HC(α, β, γ,∞). We want to show that
fCN (u) = 1 for N ⩾ N0 which means that one can find a sequence (z(N), N ⩾ N0) =
((z(N)

1 , . . . , z
(N)
D ), N ⩾ N0) such that for each N ⩾ N0 : ΦC(z(N)) ∈ H̃(λN , µN , νN , N) ∩

Ineq(n) and u ∈ z(N) + [−1/N, 1/N [. Let us take the label map

L(N) : e 7→ ΦC
N (⌊Nu⌋/N)(e) ∈ 1

N
Z. (6.6.5)
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associated to z(N) = ⌊Nu⌋/N : L(N) = ΦC
N (z(N)) where ΦC

N is associated to the bound-
aries (λN , µN , νN ). One has |z(N) − u| < 1/N by construction. We need to check that
L(N) ∈ H̃(λN , µN , νN , N) ∩ Ineq(n).

By definition, ΦC
N is a quasi label map with boundary conditions (λN , µN , νN ) so that

L(N) ∈ H̃(λN , µN , νN , N). Let us check the inequality constraints of Ineq(n). Take any
pair of edges (e, e′) subject to an inequality. Since ΦC [u] ∈ HC(α, β, γ,∞) is in the interior,
this equality is sharp for ΦC [u] that is

∃ϵe,e′ > 0 : ΦC [u](e) ⩽ ΦC [u](e′) + ϵe,e′ . (6.6.6)

Since limN→+∞ L(N)(e) = ΦC [u](e) for any edge e, there exists N0(e, e′) such that for
N ⩾ N0(e, e′):

L(N)(e) ⩽ L(N)(e′). (6.6.7)

Hence, L(N) satisfies all the inequality constraints for N ⩾ N0, where N0 is the largest of
the thresholds N0(e, e′) for (e, e′) related by an inequality constraint in Definition 6.6.1.
Therefore,

∀N ⩾ N0 : L(N) ∈ H̃(λN , µN , νN , N) ∩ Ineq(n). (6.6.8)

so that limN→+∞ fCN (u) = 1 as desired. For ΦC [u] /∈ HC(α, β, γ,∞), one of the in-
equalities in (2.b.ii) of Definition 6.6.1 is violated, for all other conditions being satisfied
by construction of ΦC . Let (e, e′) be a pair of edge such that (2.b.ii) is not satisfied :
ΦC [u](e) < ΦC [u](e′) while h(e) > h(e′) for some pair of edges of same type adjacent to a
same lozenge. Using that limN→+∞ L(N)(e) = ΦC [u](e), one has that for N large enough
L(N)(e) < L(N)(e′) so that L(N) /∈ H̃(λN , µN , νN , N) ∩ Ineq(n). Hence, (6.6.4) holds for
almost all u ∈ RD with respect to the Lebesgue measure.

Lemma 6.6.6 (Uniform bound). Let fCN (u) be as in (6.6.4). Then, there exists a compact
K(C) ⊂ RD such that for every N ⩾ 1,

|fCN (u)| ⩽ 1{u∈K(C)}. (6.6.9)

Proof of Lemma 6.6.6. If C = C0, the values z ∈ ZD such that

ΦC0
N (z) ∈ H̃C0(λN , µN , νN , N) ∩ Ineq(n)

are in [0, 1]D since (z1, . . . , zD) are the values of (ΦC0
N (z)(e1), . . . ,ΦC0

N (z)(eD)) for some
horizontal edges (e1, . . . , eD) ∈ En,d which are in [0, 1] by construction.
If C ̸= C0 by definition

ΦC(z) = Rot[C0 → C](ΦC0(z)) (6.6.10)

where ΦC0(z) is the label map of the quasi hive with simple color map C0 having horizontal
edge labeled z. For z ∈ ZD such that ΦC

N (z) ∈ H̃C(λN , µN , νN , N) ∩ Ineq(n), we know
from Ineq(n) that values {ΦC

N (z)(e), e ∈ En,d} are in [0, 1]En,d . Applying the affine hence
continuous map Rot[C → C0], we get that Rot[C → C0]ΦC(z) = ΦC0(z) ∈ Rot[C →
C0]([0, 1]En,d) which is compact. In particular, the labels (zi = ΦC0(z)(ei), 1 ⩽ i ⩽ D) of
horizontal edges ei in I are in compact sets hence bounded.
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Proof of Proposition 6.6.3. By Lemma 6.6.4 and Lemma 6.6.6, using dominated conver-
gence theorem in (6.6.3):

lim
n→∞

N−DcνN ,dλN ,µN
=
∑
C

Vol
(
u ∈ RD,ΦC [u] ∈ HC(α, β, γ,∞)

)
. (6.6.11)

6.6.3 Volume preserving map

This subsection aims at proving that there is a volume preserving map between dual hives
H(α, β, γ,∞) and hives P gα,β,γ of Definition 6.1.4. Refer to the notations of Section 6.1 for
the hives and related notions.

Let H = (C,L) ∈ H̃C(α, β, γ,∞). We assign to H an function ΨC(H) : Rd,n → R
constructed as follows. Set ΨC(H)(v) = d where v is the south-east vertex of Rd,n. For
any other vertex v ∈ Rd,n such that e = (u, v) ∈ En,d and for which ΨC(H)(u) has been
set, the value ΨC(H)(v) is given by

ΨC(H)(v) =
{

ΨC(H)(u) + L(e) if e is of type 1 or 2
ΨC(H)(u) + 1 − L(e) if e is of type 0.

(6.6.12)

See Figure 6.28 for a picture of the recursive construction of ΦC along edges.

v u
+(1− L(e))

v

u

+L(e)

u

v

+L(e)

Figure 6.28: Values at vertices when traversing an edge e = (u, v).

Definition 6.6.7 (Dual hive to hive). Let C be a color map. Define

SC = {v4 | l = (v1, v2, v3, v4) is a rigid lozenge} ⊂ Rd,n (6.6.13)

and
P̃Cα,β,γ := {f : Rd,n \ SC → R | f∂Rd,n given by α, β, γ}. (6.6.14)

Moreover, define

ΨC : H̃C(α, β, γ,∞) → P̃Cα,β,γ (6.6.15)
H = (C,L) 7−→ ΨC(H) (6.6.16)

where ΨC(H) is given by (6.6.12) in the above construction.

Remark that the choice of v4 and the coloring on the boundary ensures that v4 is never
on the boundary of Rd,n in the above definition. That the map ΨC is well defined is due
to the face summation constraint L(e1) + L(e2) = 1 − L(e0) around every face f ∈ Fk
having edges (e0, e1, e2) of respective types 0, 1, 2 for the label maps L of dual hives in
H̃C(α, β, γ,∞). Remark that ΨC depends on C only through its domain and target space.
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Remark 6.6.8 (Extension of functions of P̃Cα,β,γ ). Let f ∈ P̃Cα,β,γ . Then f can be uniquely
extended to a map f : Rd,n → R by setting f(v4) = f(v3) + f(v1) − f(v2) for any v4 ∈ SC .

Let C : En,d → {0, 1, 3,m} be a regular color map. Define

g[C] : Rd,n → Z3

v 7→ g[C](v)

where the value at vertex v ∈ Rd,n is set as follows. If v = A0 the south-east most vertex
in Rd,n, set g[C](v) = 0. Orient the edges in En,d around direct triangles clockwise and
edges around reversed triangles counterclockwise. For any oriented edge e = (u, v), set

g[C](v) =


g[C](u) + 1 if C((u, v)) = 1
g[C](u) + 2 if C((u, v)) = 0
g[C](u) if C((u, v)) ∈ {3,m}.

(6.6.17)

Proposition 6.6.9 (From color maps to regular labelings). The above map C 7→ g[C]
is a bijection between color maps on En,d and regular labelings on Rd,n. For any regular
labeling g, its inverse is given by

C[g] : En,d → {0, 1, 3,m}
e = (u, v) 7→ C[g](e)

where, if w ∈ Rd,n denotes the third vertex so that (u, v, w) is a direct triangular face,

C[g](e) =


1 if g(v) − g(u) = 1
0 if g(v) − g(u) = 2
3 if g(v) = g(u) and g(w) = g(u) − 1 = g(v) − 1
m if g(v) = g(u) and g(w) = g(u) + 1 = g(v) + 1.

(6.6.18)

Proof. Let us show that g[C] is well defined. Since C is a color map, the only colors
around a triangular face in En,d are up to cyclic permutations (0, 0, 0), (1, 1, 1), (1, 0, 3)
and (0, 1,m). One checks that summing the clockwise differences of values of g going from
a vertex to itself around any such color triple gives a zero contribution in Z3. There-
fore, the value of g[C](v) does not depend on the choice of the path from A0 to v. That
(g[C]A, g[C]B, g[C]C) has the right boundary conditions is due to the fact that C is reg-
ular. It remains to check the lozenge condition on g[C] from Definition 6.1.1. Take any
lozenge l = (v1, v2, v3, v4) and suppose that g[C](v2) = g[C](v4). Note that from Figure
6.3, the edge between v2 and v4 is always oriented from v4 to v2. The edge e = (v4, v2)
has color either 3 or m. Since C is a color map, the two faces adjacent to e have either
(1, 0, 3) or (0, 1,m) colors. The face with vertices (v1, v2, v4), respectively (v3, v2, v4) is
always direct, respectively reversed, see Figure 6.3. If C(e) = 3, g[C](v1) = g[C](v2) + 1
and g[C](v3) = g[C](v2) + 2 whereas if C(e) = m, g[C](v1) = g[C](v2) + 2 and g[C](v3) =
g[C](v2) + 1. In both cases, {g[C](v1), g[C](v3)} = {g[C](v2) + 1, g[C](v2) + 2} and thus
g[C] is a regular labeling.

Let us show that g 7→ C[g] maps a regular labeling g to a color map. Since g is reg-
ular, C[g] also is by the same argument as above. Let us show that the only cyclic
colors triples around any triangular face are (0, 0, 0), (1, 1, 1), (1, 0, 3) and (0, 1,m). Take
any triangular face and denote X,Y, Z the clockwise differences of values of g. Then,
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i=1 αi
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i=1 αi
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|α|+ |β| = |γ|+ d

d+
∑n−1

i=1 γi

d+
∑n−d+1

i=1 γi

d+
∑n−d

i=1 γi

Figure 6.29: Boundary conditions on P
g[C]
α,β,γ induced by ΨC on boundary conditions in

Figure 6.27.

X + Y + Z = 0[3] so that (X,Y, Z) ∈ {(1, 1, 1), (2, 2, 2), (0, 1, 2), (0, 2, 1)} up to cyclic
rotation. Note that we exclude (0, 0, 0) by the lozenge condition in Definition 6.1.1 since
no lozenge can have three vertices with equal values, for otherwise the second condition
of Definition 6.1.1 is violated. These possible height differences give the clockwise colors
{(1, 1, 1), (0, 0, 0), (3, 1, 0), (m, 0, 1)} respectively. Therefore, C[g] is a color map and by
construction g 7→ C[g] is the inverse of C 7→ g[C].

Lemma 6.6.10 (Image of limit dual hives are toric concave functions). For any regular
color map C,

ΨC(HC(α, β, γ,∞)) = P
g[C]
α,β,γ . (6.6.19)

where g[C] is the regular labeling associated to C as in Proposition 6.6.9 and P g[C]
α,β,γ is the

polytope defined in Definition 6.1.4.

Proof. The image ΨC(H) of any limit hive H = (C,L) ∈ HC(α, β, γ,∞) can be extended
by Remark 6.6.8 to a function f : Rd,n → R such that by construction

ΨC(H) = f|Rd,n\SC = f|Supp(g[C]) .

Let us check that f ∈ P
g[C]
α,β,γ . By construction, the values of f on ∂Rd,n are as in Definition

6.1.4, see Figure 6.29. By definition of the extension, f satisfies the equality constraints
over any rigid lozenge in Rd,n. For any other lozenge l = (v1, . . . , v4), the inequality
f(v2) + f(v4) ⩾ f(v1) + f(v3) is equivalent to the inequality (2c) of Definition 6.6.1.

Conversely, to any function f ∈ P
g[C]
α,β,γ , associate the label map L[f ] : En,d → R⩾0,

e = (u, v) 7→ L[f ](e) = f(v) − f(u) if e has type 1 or 2 and L[f ](e) = 1 − (f(v) − f(u))
if e has type 0. The equality and inequality constraints in Definition 6.6.1 are equivalent
to the rhombus concavity of f so that H = (C,L) ∈ HC(α, β, γ,∞). Moreover, we have
that ΨC(H) = f .
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With the definitions above, we have an affine map ΨC ◦ ΦC : RD → P̃Cα,β,γ . In the rest of
this section, we write det(ΨC◦ΦC) for the determinant of the linear part of this application.

Proposition 6.6.11 (Volume preservation by duality). Let C be a color map. Then, the
map

ΨC ◦ ΦC : RD → P̃Cα,β,γ (6.6.20)

satisfies ∣∣∣det
(
ΨC ◦ ΦC

)∣∣∣ = 1 (6.6.21)

and thus

Vol
(
u | ΦC(u) ∈ HC(λ, µ, ν,∞)

)
= Vol

(
u | ΨC ◦ ΦC(u) ∈ P

g[C]
α,β,γ

)
= Vol(P g[C]

α,β,γ).
(6.6.22)

Proof. For C = C0, enumerat by e1, . . . , eD the horizontal edges in C0 as in Lemma 6.5.24.
Then, for u ∈ RD and v ∈ Rd,n,

[ΨC0 ◦ ΦC0(u)](v) =
∑
ei

(1 − ui) + (d− v2)+ +
v2∑
i=1

βi ,

where the sum is over edges ei of type 0 connecting v to the east boundary of En,d with
inverse

[ΨC0 ◦ ΦC0(f)]−1(i) = 1 − (f(v) − f(v′))

where v, v′ the both endpoint of ei with the correct orientation. Since ΨC0 ◦ ΦC0 and
[ΨC0 ◦ ΦC0(f)]−1 have integer coefficients, det(ΨC0 ◦ ΦC0) = 1.

If C is general, introduce for each hexagon rotation C → C ′ given by an hexagon h
the map R̃C→C′ : P̃Cα,β,γ → P̃C

′
α,β,γ by

1. For f ∈ P̃ cα,β,γ , extend f uniquely to a function f : Rd,n → R,

2. Let us describe how the hexagon rotation C → C ′ maps f to another function
f ′ : Rd,n → R. The value of the center vertex c of h is uniquely determined by the
position of the rigid lozenge in h and the values of f on ∂h. Indeed, if (v, v′, v′′)
are the three other vertices of the rigid lozenge such that C((c, v′′)) = m, then
f(c) = f(v)+f(v′)−f(v′′). Note that v, v′, v′′ ∈ ∂h. For every vertex u ∈ Rd,n other
that the center vertex c of h, we set f ′(u) = f(u). In the hexagon rotation C → C ′,
the position of the rigid lozenge changes and we set f ′(c) = f(w) + f(w′) − f(w′′)
where w,w′, w′′ ∈ ∂h are the new vertices of the rigid lozenge in the rotated hexagon.

3. The map R̃C→C′(f) is defined as the restriction of f ′ of the previous step to Rd,n\SC′ .

Note that the map R̃C→C′ is an affine bijection with integer coefficients whose inverse
is given by R̃C′→C . Let us check that the following diagram is commutative

P̃Cα,β,γ P̃C
′

α,β,γ

H̃C(α, β, γ,∞) H̃C′(α, β, γ,∞)

R̃C→C′

ΨC

Rot[C,C′]
ΨC′ (6.6.23)
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Let H = (C,L) ∈ H̃C(α, β, γ,∞) having an ABC hexagon h with center vertex c. De-
note by C ′ the color map obtained after any rotation h 7→ h′ and set H ′ = (C ′, L′) =
Rot[C,C ′](H). For any vertex u ̸= c ∈ Rd,n, one has R̃C→C′(ΨC(H))(u) = ΨC(H)(u).
Moreover, if u ̸= c then one can find a path of edges from the south-east most vertex of
Rd,n to u without any edge incident to c. Since the labels of these edges are not changed
by Rot[C → C ′], we have that ΨC′(H ′)(u) = ΨC(H)(u) = R̃C→C′(ΨC(H))(u) as de-
sired. It remains to check that the same property holds for u = c. Denote (v, v′, v′′),
respectively (w,w′, w′′) the vertices on ∂h such that up to cyclic rotation (v, c, v′, v′′), re-
spectively (w, c, w′, w′′), are vertices of the rigid lozenge in h, respectively h′, and that
C((u, v′′)) = C ′((u,w′′)) = m. Then,

R̃C→C′(ΨC(H))(u) = ΨC(H)(w) + ΨC(H)(w′) − ΨC(H)(w′′)

Since the values of Ψ do not depend on the chosen path, let us choose the following four
paths. Take any path p = (e1, . . . , er) ∈ (En,d)r from the south-east vertex A0 to w such
that for each 1 ⩽ i ⩽ r, ei is not an interior edge of h. Then,

1. To evaluate ΨC(H)(w), we choose the path p,

2. To evaluate ΨC(H)(w′′), we append the edge (w,w′′) ∈ ∂h to p,

3. To evaluate ΨC(H)(w′), we append edges (w,w′′), (w′′, w′) ∈ (∂h)2 to p,

4. To evaluate ΨC′(H ′)(u), we append the edge (w, u) to p,

which gives

ΨC(H)(w) =
∑

1⩽i⩽r
L(ei) + d

ΨC(H)(w′′) =
∑

1⩽i⩽r
L(ei) + L((w,w′′)) + d

ΨC(H)(w′) =
∑

1⩽i⩽r
L(ei) + L((w,w′′)) + L((w′′, w′)) + d

ΨC′(H ′)(u) =
∑

1⩽i⩽r
L′(ei) + L′((w, u)) + d.

Since we have chosen edges ei ∈ p not interior to h, L(ei) = L′(ei) for 1 ⩽ i ⩽ r. The
commutativity of the diagram is thus equivalent to

L′((w, u)) = L((w,w′′)) + L((w′′, w′)) − L((w,w′′)) = L((w′′, w′)),

i.e
L′((w, u)) = L((w′′, w′)).

Notice that (w, u), (w′′, w′) are two edges of the same type in the rigid lozenge in C ′ which
implies that L′((w, u)) = L′((w′′, w′)) = L((w′′, w′)), where the last equality is due to the
fact that (w′, w′′) ∈ ∂h so that its label value is unchanged by Rot[C,C ′]. The commuta-
tivity of (6.6.23) is thus showed.

Using (6.6.23), we have for any sequence of hexagon rotations C0 → C1 → · · · → C,∏
R̃Ci→Ci+1ΨC0 ◦ ΦC0 = ΨC

∏
Rot[Ci → Ci+1]ΦC0 = ΨC ◦ ΦC .
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On the left hand side, every map is affine with integer coefficient and with inverse having
integer coefficients, so the same is true on the right hand-side, and thus∣∣∣det

(
ΨC ◦ ΦC

)∣∣∣ ,
which yields (6.6.22) using Lemma 6.6.10 for the first equality.

6.6.4 Proof of Theorem 6.1.5 and Corollary 6.1.6

Proof of Theorem 6.1.5. By Theorem 6.2.8 we have

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
n!∆′(e2iπα)∆′(e2iπβ) lim

N→∞
N−(n−1)(n−2)/2cνN ,dλN ,µN

. (6.6.24)

By Proposition 6.6.3 and Proposition 6.6.11,

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
n!∆′(e2iπα)∆′(e2iπβ)

∑
C

Vol
(
u | ΦC [u] ∈ HC(α, β, γ,∞)

)
(6.6.25)

= sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
n!∆′(e2iπα)∆′(e2iπβ)

∑
C

Vol(P g[C]
α,β,γ) (6.6.26)

= sf(n− 1)(2π)(n−1)(n−2)/2∆′(e2iπγ)
n!∆′(e2iπα)∆′(e2iπβ)

∑
g:Rd,n→Z3 regular

Volg(P gα,β,γ). (6.6.27)

Proof of Corollary 6.1.6. From the expression [Wit91, Eq. (4.116)] proven in [JK98], we
have

Vol
[
M(Σ3

0, α, β, γ)
]

= #Z(SU(n)) Vol(SU(n))
Vol((R/2πZ)n−1)3

∑
λ∈Zn⩾0

1
dimVλ

χλ(e2iπα)χλ(e2iπβ)χλ(e2iπγ),

where Z(SU(n)) is the center of SU(n). From (6.2.3), we deduce that

Vol
[
M(Σ3

0, α, β, γ)
]

= #Z(SU(n)) Vol(SU(n))(2π)n−1n!
Vol((R/2πZ)n−1)3|∆(e2iπγ)|2 dP[−γ|α, β].

Corollary 6.1.6 is then deduced from Theorem 6.1.5 and the fact that Z(SU(n)) = 2(n+1)[2],
Vol(SU(n)) = (2π)n(n+1)/2−1∏n

k=1 k! and Vol((R/2πZ)n−1) = (2π)n−1.



Chapter 7

Enumeration of crossings in
two-step puzzles

In his work [Knu99], Knutson conjectured that the structure constants of the cohomology
ring of a partial flag variety GL(n)/P can be computed by the number of tilings of the
triangular lattice called puzzles using specific tiles with side labels. The puzzle conjecture
for the two-step flag variety was eventually proved in [Buc+16] as presented in Section
3.2.4. The extension of the puzzle rule to equivariant Schubert structure constants for the
two-step flag variety was conjectured by Coskun and Vakil [CV09] and proved by Buch
[Buc15]. In the latter, Buch introduced transformations on equivariant two-step puzzles
called mutations which in particular encompass the local rules of [Buc+16].

Edge labels on boundaries of two-step puzzles [Buc+16] are 012 strings, see Section 3.2.4.
At the scale of the whole puzzle, the labels 0 and 1 create lines starting from the bound-
aries and crossing each other inside the puzzle. There are two possible types of crossings
up to rotations. In one type of crossing, the lines joining identical labels from both sides
cross each other by keeping their direction constant which is encoded in the puzzle by
the label 7 inside the configuration. In the other type of crossing, the line joining labels
0 may not keep its direction constant which is encoded by the presence of at least one
label 3 in the configuration. In the work [FT24] which is Chapter 6 of this thesis, inspired
from the hive model of Knutson and Tao [KT99; KTW04], we constructed a bijection
between two-step puzzles and objects called two-colored dual hives which involve tilings of
the triangular lattice called color maps together with edge labels satisfying inequality and
equality conditions. The bijection converts labels 7 in two-step puzzles to edges of color
m in color maps. Moreover, the number of crossings of the second type is equal to the
number of edges of color 3 in the color map.

This chapter presents our result which is a formula for the number of crossings of each
type that is, for both the number of labels 7 and the number of crossings of the second
type in any two-step puzzle. Our formula depends only on the 012 boundary strings
of the puzzle. In Section 7.1 we give the necessary definitions to state the main result.
The latter is first expressed in terms of color maps in Theorem 7.1.5 which translates to
crossings in two-step puzzles in Corollary 7.1.6. Section 7.2 recalls some definitions of
local configurations in color maps. Section 7.3 proves the main identity in a special case
where the boundaries of the color map are in a simple form. Section 7.4 starts with local
propagations of configurations in color maps called gashes which are directly inspired from
[Buc15] and proves the main identity by induction using propagations.

179
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7.1 A formula for the number of crossings

Definition 7.1.1 (Triangular lattice). Let n ⩾ 1 and let ξ = e
iπ
3 . Let us denote by

Tn = {r + sξ, 0 ⩽ r + s ⩽ n} the vertices of the triangular lattice of size n and by
En = {(x, x + v) | x, x + v ∈ Tn and v ∈ {−ξ2l, 0 ⩽ l ⩽ 2}} the set of edges in Tn. The
faces of the lattice Tn are triangles which are called direct (respectively reversed) if the
corresponding vertices (x1, x2, x3) ∈ T 3

n can be labeled in such a way that x2 − x1 = (1, 0)
and x3 − x1 = ξ (respectively x3 − x1 = ξ).

Edges in En can only have three possible orientations. If x = r+ sξ ∈ Tn, we define three
coordinates (x0, x1, x2) by

x0 := n− (r + s), x1 := r and x2 := s.

Definition 7.1.2 (Edge coordinate and type). We say that an edge e = (x, x + v) is of
type l for l ∈ {0, 1, 2} when v = −ξ2l. The origin of e is x and the coordinates of e is
the triple (e0, e1, e2) = (x0, x1, x2). The height of e of type l is h(e) = el. Define also the
boundary edges of En by

∂
(n)
0 := (((n− r + 1, 0), (n− r, 0)), 1 ⩽ r ⩽ n)

∂
(n)
1 :=

(
(nξ + (r − 1)ξ, (nξ + rξ)), 1 ⩽ r ⩽ n

)
∂

(n)
2 :=

(
((r − 1)ξ, rξ), 1 ⩽ r ⩽ n

)
.

Definition 7.1.3 (Color map). Let n ⩾ 1. A color map is a map C : En → {0, 1, 3,m}
such that the boundary colors around each triangular face in the clockwise order is either
(0, 0, 0), (1, 1, 1), (1, 0, 3) or (0, 1,m) up to a cyclic rotation.

The values of a color map C on the boundary edges are denoted ∂C = (∂0C, ∂1C, ∂2C)
and are defined for l ∈ {0, 1, 2} as ∂lC = C|∂(n)

l

. We say that C has boundary condition
∂ = (∂0, ∂1, ∂2) if ∂C = ∂.
Alternatively, one can view a color map C as a tiling of Tn by the set of edge labeled tiles
of Figure 7.1 where tiles can be rotated. The last two tiles are respectively called 3 and
m lozenges in accordance with the color of their middle edge.

1 1
1

0 0
0

0 0
1

1
3 1 1

0

0
m

Figure 7.1: Possible tiles for color maps

As there is an equal number of both 0 and 1 labels on each side of two-step puzzles, we will
consider boundary conditions ∂C ∈ {0, 1}3n having an equal number of 0 and 1 colored
edges respectively denoted by n0 and n1 so that n0 + n1 = n, see Figure 7.2 below. Such
boundary conditions correspond to those of two-step puzzles [Buc+16] where one removed
the labels 2 from the boundary 012 strings.
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0 0
0

0 0
0

0 0
0

0 0

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1

1
0

00

0
1

1 1

1

3

3

3m

m

m

∂ 2
C
=
(0
, 1
, 0
, 1
, 1
) ∂

1 C
=
(1, 1, 0, 0, 1)

∂0C = (1, 0, 1, 1, 0)

Figure 7.2: A color map on E5 with boundary condition ∂C =
((1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (0, 1, 0, 1, 1)).

Definition 7.1.4 (Gash numbers). Let C : En → {0, 1, 3,m} be a color map. For any l ∈
{0, 1, 2} and edge e ∈ ∂

(n)
l denote by n(C, e) = |{e′ ∈ ∂

(n)
l : h(e′) < h(e) and C(e′) = 1}|

the number of 1 colored edges east (respectively north, south) to e if e ∈ ∂
(n)
0 (respectively

e ∈ ∂
(n)
1 , e ∈ ∂

(n)
2 ). The gash numbers of the color map C are defined for l ∈ {0, 1, 2} as

G(C, l) :=
∑

e∈∂(n)
l

:C(e)=0

n(C, e). (7.1.1)

For instance, in the color map C of Figure 7.2, one has G(C, 0) = 4, G(C, 1) = 4, G(C, 2) =
1. The main result of this chapter is Theorem 7.1.5 which gives a formula for the number
of 3 and m colored edges in color maps which depends only on the gash numbers.

Theorem 7.1.5 (Label count in color maps). Let C be a color map on En having n0,
respectively n1, edges of color 0, respectively 1, on each of its boundaries. Let m(C) and
s(C) denote respectively the number of m and 3 colored edges in C. Then,

m(C) = G(C, 0) +G(C, 1) +G(C, 2) − n0n1 (7.1.2)

and
s(C) = 2n0n1 −G(C, 0) −G(C, 1) −G(C, 2). (7.1.3)

Let us also mention that one can count other types of tiles in C. The enumeration of
triangular faces having edges of the same color is given in Corollary 7.4.6.

In [FT24, Theorem 5.3] a bijection was defined between two-step puzzles of [Buc+16]
and objects called two colored dual hives consisting of a color map together with a label
map, see [FT24, Definition 5.1] for details on the definition. In particular, this bijection
converts labels 7 of two-step puzzles into to m colored edges. Moreover the number of
edges e ∈ En with color C(e) = 3 in the obtained color map is equal to the number of
pieces of the form of Figure 7.3 where the number of labels 2 is arbitrary and where the
configuration can be rotated. This piece is one of the composed puzzle pieces of [Buc+16]
which we call a soft crossing in the rest of this chapter.
Recall that the clockwise labels on boundaries of two-step puzzles are 012 strings. Let u
be a 012 string of length n: u = u1 . . . un where ui ∈ {0, 1, 2}, 1 ⩽ i ⩽ n. In accordance
with Definition 7.1.4, define

G(u) :=
∑

1⩽i⩽n:ui=0
|{j ⩽ i | uj = 1}|.
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1
0
3
2
6
2 2

1
0
36

2
3 . . .

Figure 7.3: A soft crossing in two step puzzles.

Theorem 7.1.5 yields a direct computation of the number of labels 7 and soft crossings in
any two-step puzzle given in Corollary 7.1.6.

Corollary 7.1.6 (Labels 7 and soft crossings in two-step puzzles). Let P be a two-step
puzzle with boundary given by three 012 strings u, v, w respectively on the left, right and
bottom sides in clockwise order, each having n0 symbol 0 and n1 symbol 1. Let n(P, sc)
and n(P, 7) denote respectively the number of soft crossings and labels 7 in P . Then,

n(P, 7) = G(u) +G(v) +G(w) − n0n1,

n(P, sc) = 2n0n1 −G(u) −G(v) −G(w).

Proof. Let C be the color map associated to the image of P by the bijection from Definition
5.2 in [FT24]. Then, G(C, 0) = G(w), G(C, 1) = G(v) and G(C, 2) = G(u). Moreover,
n(P, sc) = s(C) and n(7, P ) = m(C) from which one derives the result using (7.1.2) and
(7.1.3).

Sketch of the proof of Theorem 7.1.5. In Section 7.2, we introduce some transfor-
mations on color maps that will play a role in the rest of the chapter. In Section 7.3, we
prove Theorem 7.1.5 in the case where G(C, 2) = 0. This is done by showing that when
G(C, 2) = 0, the color map can be reduced to a simple color map in which the counting
is explicit. In Section 7.4, we give a procedure to transform any color map C to another
color map C ′ such that G(C ′, 2) = G(C, 2) − 1 from which one can prove Theorem 7.1.5
by induction.

7.2 Arrows

In this section, we recall some definitions on local configurations introduced in [FT24].

Definition 7.2.1 (Opening). Let x ∈ Tn. An opening of type l ∈ {0, 1, 2} at x is a pair
of edges (e, e′) ∈ E2

n such that if e = (e1, e2), e′ = (e′
1, e

′
2) with (e1, e

′
1, e2, e

′
2) ∈ T 4

n and
t(e), t(e′) are the types of e and e′,

ei = e′
i = x for some i ∈ {1, 2},

{t(e), t(e′)} = {l − 1, l + 1} and C(e) = C(e′) ∈ {0, 1}.

The color of the opening is defined as the color of edges e and e′.

Consider an opening a = (e, e′) at x of type l and color c ∈ {0, 1}. Let e′′ = e′′(a) be the
edge such that e, e′ are edges of the lozenge with middle edge e′′. The only possible colors
of the edge e′′ are C(e′′) ∈ {0, 1}. If C(e′′) = c, the two triangular faces of the lozenge with
middle edge e′′ have all of their edges colored c. If C(e′′) ̸= c, then there is an opening
a′ of type l and color c at the other endpoint of e′′. Note that there can only be finitely
many such openings before C(e′′) = c.
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Definition 7.2.2 (Arrow). Let a = (e, e′) be an opening of type l and color c. Let r ⩾ 0
be the number of successive openings having middle edge e′′ such that C(e′′) ̸= c with
C(e′′) ∈ {0, 1} as in the previous paragraph. An arrow of length r ⩾ 0 at the opening a
is the configuration of edges consisting of the r ⩾ 0 successive pairs of 3 and m lozenges
together with the pair of direct and reverse faces with boundary edges of color c.

See Figure 7.4 for examples of openings and arrows.
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Figure 7.4: First row from left to right : an opening a with color 0 and type 0 at x, the
case C(e′′) = c, the case C(e′′) ̸= c and an arrow of length r = 4. The second row is the
analog for color 1.

Let A be an arrow of length r ⩾ 1 at an opening with center x. The reversal of A is the
configuration obtained by applying a rotation of π to A. An example of arrow reversal is
given in Figure 7.5.
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Figure 7.5: Reversal of an arrow of length 4 at x.

7.3 A simpler case

In this section, we prove (7.1.2) for color maps C such that G(C, 2) = 0. We first reduce
the color map C to C ′ so that all the 0 colored edges on ∂0C

′ are consecutive starting
from the bottom left coner of Tn. This is done in Section 7.3.1. In Section 7.3.2, we give
an explicit counting of m(C ′) and in Section 7.3.3 we show (7.1.2) when G(C, 2) = 0 using
the two previous sections.

7.3.1 Reduction of color maps

Definition 7.3.1 (Lozenge and trapeze regions). Let x = (x0, x1, x2) ∈ Tn and let r, s ⩾ 0
be such that (r, s) ̸= (0, 0). We define the lozenge region L[r, s, x] ⊂ En as

L[r, s, x] := E({x+ u+ vξ, (u, v) ∈ {0, . . . , r} × {0, . . . , s}}) (7.3.1)

where for a subset V ⊂ Tn, E(V ) ⊂ En is the subset of edges having both endpoints in
V . Moreover, the trapeze region T [r, s, x] ⊂ En is defined for s ⩾ r as

T [r, s, x] := E({x+ u+ vξ, (u, v) ∈ {0, . . . , r} × {0, . . . , s} : v + u ⩽ s}). (7.3.2)
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For an illustration of lozenge and trapeze regions, see Figure 7.6.

Lemma 7.3.2 (Filling a lozenge region). Let L[r, s, x] be a region as in (7.3.1). Suppose
that its boundary edges {(x+u, x+u−1), 1 ⩽ u ⩽ r} and {(x+vξ, x+(v+1)ξ), 0 ⩽ v ⩽ s−1}
are colored 1 and 0 respectively. Then, every edge in L[r, s, x] of type 1 has color 3, which
determines the color of all edges in L[r, s, x] uniquely.

Proof. For any v ∈ Tn such that C((v+ 1, v)) = 1 and C((v, v+ ξ)) = 0, there is only one
possible set of values for a color map C on edges (v+ξ, v+1), (v+1+ξ, v+ξ), (v+1, v+1+ξ)
which is given by (3, 1, 0). Applying this constraint to v = x, x + 1, . . . , x + r − 1 in this
order and using induction to fill the remaining region L[r, s−1, x+ξ] shows the result.

Lemma 7.3.3 (Filling a trapeze region). Let T [r, s, x] be a region as in (7.3.2). Suppose
that its edges {(x + u, x + u − 1), 1 ⩽ u ⩽ r} and {(x + vξ, x + (v + 1)ξ), 0 ⩽ v ⩽ s − 1}
are colored 0. Then, up to some arrow reversals, every edge in T [r, s, x] has color 0.

Proof. We will prove the result by induction over r. Assume that r = 1. The triangular
face having edges (x + 1, x) and (x, x + ξ) colored 0 has its third edge (x + ξ, x + 1) of
type 1 also colored 0. Then, the edges (x+ ξ, x+ 1) and (x+ ξ, x+ 2ξ) form a 0 opening
that we call o1. Consider the arrow A1 at o1 of length ℓ ⩾ 0 having its other endpoint at
x+ ℓ+ 1. Apply the arrow reversal as in Figure 7.5 which only changes the colors of edges
inside A1. Then, the edges (x + 1, x + 1 + ξ), (x + 1 + ξ, x + ξ) and (x + 2ξ, x + 1 + ξ)
have color 0. Notice that in the resulting configuration, the edges (x+ 2ξ, x+ 1 + ξ) and
(x+ 2ξ, x+ 3ξ) form a 0 opening. Moreover, reversing an arrow between endpoints x and
x + ℓ + 1 does not modify the colors of the edges e having origin y such that y0 ⩾ x0.
By successively considering the 0 openings formed by edges (x+ vξ, x+ 1 + (v− 1)ξ) and
(x+ vξ, x+ (v + 1)ξ) for 1 ⩽ v ⩽ s− 1, we get that T [1, s, x] has every edge colored 0.
For r ⩾ 2, using the same argument as above shows that all edges in T [1, s, x] are colored
0. Since T [r, s, x] = T [1, s, x] ∪ T [r − 1, s− 1, x+ 1], one gets the result by induction.

Remark 7.3.4 (Filling lozenge and trapeze regions). Note that the results of Lemmas
7.3.2 and 7.3.3 remain valid if one swaps labels 0 and 1, replacing 3 lozenges in a lozenge
region by m lozenges and 0 colored edges in the trapeze region by 1 colored edges.

The next Lemma shows that the bottom region adjacent to ∂
(n)
0 of a color map has an

explicit description in terms of lozenge and trapeze regions. An illustration of that region
is given in Figure 7.6 where the lozenge regions are filled with lozenges having middle edge
of type 1 colored 3 and trapeze regions have all of their edges colored 0.

Lemma 7.3.5 (Structure above ∂(n)
0 ). Let C be a color map such that G(C, 2) = 0. Then,

there exists p = p(C) ⩾ 1 and 0 = y0 ⩽ x1 < y1 < x2 < · · · < yp−1 < xp < yp ⩽ n such
that up to some arrow reversals, denoting ri = yi − xi and bi = xi − yi−1 for 1 ⩽ i ⩽ p,
the regions

L[b1, n0, (y0, 0)], L[b2, n0 − r1, (y1, 0)], . . . , L[bp, rp, (yp, 0)]

are filled by lozenges having middle edge of type 1 colored 3 and such that regions

T [r1, n0, (x1, 0)], T [r2, n0 − r1, (x2, 0)], . . . , T [rp, rp, (xp, 0)]

have their edges colored 0.

Proof. Set y0 = 0 and by convention C((0,−1)) = C((n+ 1, n)) = 1. Define

p = |{1 ⩽ x ⩽ n− 1 | C((x, x− 1)) = 0 and C((x+ 1, x)) = 1}| ⩾ 1 (7.3.3)
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and for 1 ⩽ i ⩽ p,

xi = inf{u ⩾ yi−1 | C((u, u− 1)) = 1 and C((u+ 1, u)) = 0} (7.3.4)
yi = inf{u ⩾ xi | C((u, u− 1)) = 0 and C((u+ 1, u)) = 1}. (7.3.5)

We have that y0 ⩽ x1 < y1 < x2 < · · · < yp−1 < xp < yp. Recall that ri = yi − xi and
bi = xi − yi−1 for 1 ⩽ i ⩽ p.

Since G(C, 2) = 0, the region L[b1, n0, (0, 0)] has its edges {(x, x − 1), 1 ⩽ x ⩽ b1} and
{(x, x + ξ), 0 ⩽ x ⩽ n0 − 1} colored 1 and 0 respectively which implies by Lemma 7.3.2
that it is filled by lozenges having middle edge of type 1 colored 3 except in the case where
b1 = 0 for which L(b1, n0, (0, 0)) = {(x, x + ξ), 0 ⩽ x ⩽ n0 − 1} has all of its edges on
∂

(n)
2 colored 0. Remark that edges in L(b1, n0, (0, 0)) with coordinate e1 equal to x1 are

colored 0. Therefore, the trapeze region T [r1, n0, (x1, 0)] has its boundary edges colored 0
as in Lemma 7.3.3 which shows that up to arrow reversals, it has all of its edges colored
0. Using Lemmas 7.3.3 and 7.3.2 successively on the regions

L[b1, n0, (y0, 0)], L[b2, n0 − r1, (y1, 0)] . . . , L[bp, rp, (yp−1, 0)]

and
T [r1, n0, (x1, 0)], T [r2, n0 − r1, (x2, 0)] . . . , T [rp, rp, (xp, 0)]

gives the result. Notice that the order of the applications of Lemma 7.3.3 is compatible
with the arrow reversals involved for the trapeze regions in the sense that arrow reversals
in T [a, b, x] only affect edges e ∈ En such that e1 ⩾ x1.

0 0
1

1
3

L(b1, n0, (y0, 0))

x1y0

n0ξ

T (r1, n0, (x1, 0))

y1

r1 = y1 − x1

L(b2, n0 − r1, (y1, 0))

x2

. . .

xp yp

Figure 7.6: Region at the bottom of C. Lozenge regions are filled with 3 lozenges and
trapeze regions are filled with 0 colored edges.

Recall that for 1 ⩽ i ⩽ p, ri(C) = yi −xi denotes the number of edges of ∂0C which are in
the i-th trapeze region of Figure 7.6.

Lemma 7.3.6 (Grouping columns). Let C be a color map and let p = p(C) and 0 =
y0 ⩽ x1 < y1 < x2 < · · · < yp−1 < xp < yp ⩽ n be defined as in Lemma 7.3.5.
Assume that p(C) ⩾ 2. Using arrow reversal, adding rp×bp m-colored edges and removing
rp × bp 3-colored edges, one can map C to C ′ such that p′ = p(C ′) = p(C) − 1 and
rp′(C ′) = rp(C) + rp−1(C).
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Proof. Let us first define a local transformation. Consider any vertex v ∈ Tn such that
C((v + ξ − 1, v)) = 3 and C((v + 1, v)) = 0, so that C((v + ξ, v + 1)) = 0. Consider the
color map Cv where Cv((v, v − 1)) = 0 and Cv((v, v + ξ)) = m. We call C 7→ Cv the
replacement at v, see Figure 7.7. The color map Cv has one less 3 colored edge and one
more m colored edge than C.

00
0

0
1

1
00

0 1
0

1
m

v
•

v
•

3

Figure 7.7: Replacement at vertex v.

Consider the lozenge region L[bp + 2, rp, (yp−1 − 1, 0)] where bp = xp − yp−1 and rp =
yp − xp ⩾ 1, see Figure 7.8. Apply replacements successively at xp, . . . , yp−1 + 1 and call
C1 the resulting color map, see Figure 7.9 and Figure 7.10 for an illustration of this step.
Notice that C1 has an arrow of length bp at the 0 opening at v1 = (yp−1, 0) + ξ. Reverting
this arrow creates an arrow at v2 = v1 + ξ of length bp, see Figure 7.11. By reverting
arrows with openings at (yp−1, 0) + qξ, 1 ⩽ q ⩽ rp each with length bp, the resulting color
map φ(C) satisfies

p(φ(C)) = p and rp(φ(C)) = rp − 1 if rp ⩾ 2, (7.3.6)
p(φ(C)) = p− 1 and rp(φ(C))(φ(C)) = rp−1 + 1 if rp = 1, (7.3.7)

see Figure 7.12. By applying the previous transformation C 7→ φ(C) a number of times
equal to rp, one gets a color map C ′ such that p(C ′) = p− 1 and rp(C′)(C ′) = rp−1 + rp.
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Figure 7.8: Color map C.
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Figure 7.9: Replacement xp.
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xp, . . . , yp−1 + 1.
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Figure 7.11: First arrow reversal creating an
arrow at v2.
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Figure 7.12: Final configuration φ(C).
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From the previous Lemmas, one derives the following result.

Proposition 7.3.7 (Edge count during reduction). Let C be a color map such that
G(C, 2) = 0 and let b1 be defined as in Lemma 7.3.5. One can reduce C to a color map C ′

such that p(C ′) = 1 and b1(C ′) = 0 by removing (respectively adding) M = n0n1 −G(C, 0)
edges of color 3 (respectively of color m) so that m(C ′) = m(C)+M and s(C ′) = s(C)−M .

Proof. Apply the transformation of Lemma 7.3.6 until p = 1. Let us compute the total
number M of exchanged 3 and m colored edges in the process. The only tranformation
that changes the number of edges of color 3 and m is the replacement as in Figure 7.7.
By Lemma 7.3.6, one has applied

M̃ = rpbp + bp−1(rp−1 + rp) + · · · + b2(r2 + · · · + rp) =
p∑
j=2

rj

j∑
i=1

bi − b1

p∑
j=2

rj

replacements of 3-colored edges by the same number of m-colored edges. Moreover,

G(C, 0) =
p∑
j=1

rj(n1 −
j∑
i=1

bi) = (n1 − b1)
p∑
j=1

rj − M̃ = (n1 − b1)n0 − M̃.

If the resulting color map C̃ has b1(C̃) ⩾ 1, apply Lemma 7.3.6 a number of times equal
to n0 so that the obtained color map C ′ has x1(C̃) = 0. This last step removed b1(C)n0 =
b1(C̃)n0 edges of color 3 from C̃ and added the same number of edges of color m. Therefore,
one has removed M = M̃ + b1n0 = n0n1 − G(C, 0) edges of color 3 and added the same
number of edges of color m.

Definition 7.3.8 (Reduced color map). A color map C : En → {0, 1, 3,m} such that
G(C, 2) = 0, p(C) = 1 and b1(C) = 0 is called a reduced color map.

7.3.2 Structure of reduced color maps

In this section, we only consider reduced color maps as any color map C such that
G(C, 2) = 0 can be reduced thanks to Proposition 7.3.7 above. We first show that most
of the edges in reduced color map have their color fixed except in some region, see Figure
7.13. This region consists of specific configuration of edges described in Remark 7.3.10.
From this we derive the main result of this section in Proposition 7.3.11 which gives the
number of m and 3 colored edges in reduced color map.
By Lemma 7.3.3, a reduced color map has every edge of its trapeze region T [n0, n0, (0, 0)]
colored 0. Let R = (En \ T [n0, n0, (0, 0)]) ∪ {(n0 + sξ2, n0 + (s+ 1)ξ2), 0 ⩽ s ⩽ n0 − 1} be
the remaining region pictured in Figure 7.13.
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T [n0, n0, (0, 0)]

y1 = n0x1 = 0 n = n0 + n1

n0ξ

R

(n0 + n1)ξ

Figure 7.13: The region R in a reduced color map. Edges outside R have their color fixed.

The next Lemma shows that edges of color 0 in R can only be of type 1.

Lemma 7.3.9 (Edges of color 0 in R). Let R be the region above associated a to reduced
color map C. Then, every edge of color 0 in R is of type 1.

Proof. Assume for the sake of contradiction that there exists an edge e(0) of type 0 or 2 in
R. Take e(0) such that its origin x(0) has minimal coordinate x2. Since the color map is
reduced, edges in R∩ ∂(n)

0 have color 1 so that x2 ⩾ 1 for edges of type 0. If e(0) is of type
0, then one of the edges of type 0 with origins x(0) − ξ, x(0) − ξ + 1 or the edge of type 2
with origin x(0) − ξ is colored 0. In either case, the minimality of the x2 coordinate of x(0)

is violated. If e(0) is of type 2, the type 2 edge with center x(0) + 1 is colored 0 and both
are opposite edges of a lozenge with middle edge of type 1 colored 3 as any other piece
would either contradict the minimality of x2 or introduce an edge of type 0 and color 0
in R. Without loss of generality, one can thus assume that x(0)

0 = 1. Since ∂(n)
1 has edges

with colors 0 or 1, the upward triangular face containing e(0) would have colors (0, 0, 0) or
(0, 1,m) which would either imply that R has an edge of type 0 and color 0 or contradict
the minimality of x2.

Remark 7.3.10 (Lozenges in R). The two opposite 0 colored edges of a either 3 or m
lozenge have the same type. Since Lemma 7.3.9 shows that 0 colored edges in R have type
1, the only orientations of 3 and m lozenges in R are such that the 3 edge has type 0 and
the m edge has type 2, see Figure 7.14.

1

0

0

1
3

0
1
0

1
m

Figure 7.14: The two possible orientations of 3 and m lozenges in the region R.
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We know from Lemma 7.3.9 that the color map C in R consists in triangular faces f such
that C(f) = (1, 1, 1) together with either 3 or m lozenges oriented as in Figure 7.14. In
the rest of this section, we will view the color map C on R as a configuration of paths of
color 0 from R ∩ ∂T [n0, n0, (0, 0)] to R ∩ ∂2C as follows.
To each 3 or m lozenge of Figure 7.14, associate a line segment by joining the two centers
of the opposite 0 colored edges. We define paths (pi, 1 ⩽ i ⩽ n0) simultaneously. For each
1 ⩽ i ⩽ n0, the path pi starts in the middle of the edge of type 1 in R ∩ ∂T [n0, n0, (0, 0)]
with origin (n0, 0) + iξ2. At each step, a path having its endpoint with coordinate x2 is
continued by the affine line segment in the adjacent lozenge in R having an edge of color
0 with origin of coordinate x2 − 1. Since this lozenge can only be one of the two lozenges
of Figure 7.14, the paths are non-intersecting. After n1 steps, endpoints are located in
the middle of type 1 edges of color 0 on R ∩ ∂2C. As there are n0 such edges, the paths
(p1, . . . , pn0) form a set of non-intersecting paths where for each 1 ⩽ i ⩽ n0, the path pi
has origin at oi = (n0, 0) + (i− 1

2)ξ2 and target ti = o(ei) + 1
2ξ

5 where e1, . . . en0 are the 0
colored edges on ∂1C ordered such that h(e1) > h(e2) > · · · > h(en0).
The paths (pi, 1 ⩽ i ⩽ n0) can have two possible steps. We call the step induced by a m
lozenge a horizontal step and the step induced by a 3 lozenge a vertical step in accordance
with the red line segment joining the two opposite 0 colored edges in the lozenges of Figure
7.14.

Proposition 7.3.11 (Number of m edges in reduced color maps). Let C be a reduced
color map. Denote by n(m,R) and n(3, R) the respective number of horizontal and vertical
steps in R. Recall that m(C) and s(C) respectively denote the number of m lozenges and
3 lozenges in C. Then,

m(C) = n(m,R) = G(C, 1) (7.3.8)

and
s(C) = n(3, R) = n0n1 −G(C, 1). (7.3.9)

Proof. The only region in En where a reduced color map C has m colored edges is R. This
amounts to count the number of horizontal steps in any path configuration (pi, 1 ⩽ i ⩽ n0).
Recall that e1, . . . en0 are the 0 colored edges on ∂1C ordered such that h(e1) > h(e2) >
· · · > h(en0). As each path pi goes from

oi = (n0, 0) + (i− 1
2)ξ2 =

(
n0 − 1

2(i− 1
2), (i− 1

2)
√

3
2

)

to

ti = o(ei) + 1
2ξ

5 = (n, 0) + (n− h(ei))ξ2 + 1
2ξ

5

=
(
n− 1

2(n− h(ei) − 1
2),

√
3

2 (n− h(ei) − 1
2)
)
,

the number of vertical steps in pi is given by

2√
3

·
(√

3
2 (n− h(ei) − 1

2) − (i− 1
2)

√
3

2

)
= n− h(ei) − i

so that the total number of vertical steps in the path configuration is

n(3, R) =
n0∑
i=1

(n− h(ei) − i).
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Moreover, the number of 1 colored edges e′ such that h(e′) < h(ei) is given by

n(C, ei) = n1 − (n− h(ei) − i)

so that

G(C, 1) =
n0∑
i=1

n(C, ei) =
n0∑
i=1

(n1 − (n− h(ei) − i)) = n0n1 − n(3, R).

Therefore,
n(3, R) = n0n1 −G(C, 1)

and, since each of the n0 paths has a total number of steps given by n1,

n(m,R) = n0n1 − n(3, R) = G(C, 1).

Remark 7.3.12 (Number of reduced color maps). One can derive the number of reduced
color maps Nred(n0, n1) since this number is equal to the number of paths configurations
(pi, 1 ⩽ i ⩽ n0) which can be computed by the determinantal formula of Lindström, Gessel
and Viennot [Lin73], [GV85]:

Nred(n0, n1) = detA (7.3.10)

where A = (ai,j , 1 ⩽ i, j ⩽ n0) is the matrix whose coefficients are given by

ai,j =
(

n1
n− h(ej) − i

)
(7.3.11)

with the convention that ai,j = 0 if h(ej) + i ⩾ n.

7.3.3 Proof of Theorem 7.1.5 in the case G(C, 2) = 0
Let C be a color map such that G(C, 2) = 0. Thanks to Proposition 7.3.7, one can reduce
C to a reduced color map C ′ such that

m(C ′) = m(C) + n0n1 −G(C, 0) (7.3.12)

and
s(C ′) = s(C) − n0n1 +G(C, 0) (7.3.13)

Using (7.3.8) and (7.3.9) for the reduced color map C ′,

m(C ′) = G(C ′, 1) (7.3.14)
s(C ′) = n0n1 −G(C ′, 1). (7.3.15)

Moreover, the reduction C 7→ C ′ does not change ∂1C = ∂1C
′ so that G(C, 1) = G(C ′, 1).

Thus,
m(C) = G(C, 0) +G(C, 1) − n0n1 (7.3.16)

which is (7.1.2) since G(C, 2) = 0 and

s(C) = s(C ′) −G(C, 0) + n0n1 = 2n0n1 −G(C, 0) −G(C, 1) = n0n1 −m(C) (7.3.17)

which is (7.1.3).
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7.4 The general case
In this section, we prove (7.1.2) by induction on G(C, 2). The case where G(C, 2) = 0
has been treated in Section 7.3.3. We first introduce a procedure in Section 7.4.1 which
takes a color map C for which G(C, 2) ⩾ 1 and transform it to a color map C ′ such that
G(C ′, 2) = G(C, 2) − 1. Using the previous transform, we finish the proof of Theorem
7.1.5 in Section 7.4.2.

7.4.1 Gash propagation

We introduce local configuration of two edges of the same type sharing a vertex called a
gash, see Definition 7.4.1, which is inspired from gashes previously defined in [Buc+16],
[Buc15] and [FT24]. Gashes will propagate across a color map C by local rules presented
in Definition 7.4.2 until reaching some prescribed configuration or hitting ∂(n)

1 .

Definition 7.4.1 (Gash). Let x ∈ Tn. A gash with center x is the union of the two edges
(x, x− ξ2l), (x+ ξ2l, x) for l ∈ {1, 2} with the data of

1. Original colors given by

C((x, x− ξ2l)) = 1, C((x+ ξ2l, x)) = 0 if l = 1
C((x, x− ξ2l)) = 0, C((x+ ξ2l, x)) = 1 if l = 2.

2. New colors given by replacing 0 with 1 and vice-versa in original colors.

The type of a gash is defined as the type l ∈ {1, 2} of its edges.

Let g be gash of type 2. The only possible values of the color map C adjacent to g are given
by the configurations of Figure 7.15 that we label from (i) to (vi). The configurations can
be rotated for type 1 gashes.
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1
1
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3 0 0
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1
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m
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0
1

(iv)

3

3 0

1
1
1 0

1
m

(v)

0

1

0
0

0
1m

(vi)

Figure 7.15: Possible adjacent configuration to a gash of type 2 in dashed edges. Only the
original colors of gashes are represented.

Definition 7.4.2 (Gash propagation). Let g be gash of type 2 with center x adjacent to
a configuration (i), (ii) or (iii). The propagation of g is the gash g′ having center x + ξ
(resp. x + 1) in the case of configuration (i) (resp. (ii) or (iii)) together with the local
replacement of Figure 7.16 depending on the adjacent configuration.

If g is adjacent to a configuration (iv), notice that there is a 0 opening at its center x and
thus an arrow of color 0 at x with type 0. Reverting this arrow yields a configuration (i)
adjacent to g and we define the propagation of g to be the gash g′ of the same type as in
step (1). Using a rotation, one defines propagations for type 1 gashes with the exception of
configuration (iii) where the propagated gash is the gash of type 2 with center x′ = x+ 1.
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Figure 7.16: Propagation of a gash through configurations (i), (ii) and (iii). New colors
of gashes are written in parenthesis.

Definition 7.4.3 (Propagation algorithm). The propagation algorithm is the following
algorithm.

Input: A color map C and a gash g of type l ∈ {1, 2}.

1. Set g(0) = g, x(0) = x(g), t(0) = t(g).

2. WHILE g(s) is adjacent to (i), (ii), (iii) or (iv): set g(s+1) to be the propagation of
g(s) with center x(s+1) and type t(s+1).

Proposition 7.4.4 (Gash propagation). Let g be a gash of type 2 on ∂(n)
2 . The propagation

algorithm terminates at a gash g′ adjacent to configuration of type (v), (vi) or on ∂
(1)
n .

Proof. One checks that propagations of Definition 7.4.2 do not change the type of the gash
except in the case of a configuration (iii) which turns a gash of type 2 into a gash of type
1 and vice-versa. Since the starting gash g has type 2, the gashes have type either 1 or 2
along the propagation. At each step of the gash propagation, one has either x(s+1)

0 < x
(s)
0

or x(s+1)
1 > x

(s)
1 and t(s) ∈ {1, 2} which implies that the while loop terminates on a gash

g(∞) which is adjacent to a configuration (v) or (vi) or necessarily of type 1 on ∂
(1)
n .

In the case where a gash is adjacent to a configuration (v) or (vi), one still wants to replace
the original colors by the new ones. To do so, we introduce a local transformation called
gash removal in Definition 7.4.5.

Definition 7.4.5 (Gash removal in (v) and (vi)). Let C be a color map and let g be a
gash of type 2 with center x adjacent to a configuration (v) or (vi). The removal of g is
the new color map C ′ defined by

C ′((x, x− ξ4)) = 1, C ′((x+ ξ4, x)) = 0
C ′((x+ 1, x)) = 1, C ′((x, x− ξ2)) = 3 if C((x+ 1, x)) = m

C ′((x+ 1, x)) = 3, C ′((x, x− ξ2)) = 0 if C((x+ 1, x)) = 0
C ′(e) = C(e) otherwise.
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See Figure 7.17 for an illustration. Using rotation, one defines the gash removal for type
1 gashes adjacent to a configuration (v) or (vi).
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m 11
0
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(0)

01
3
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Figure 7.17: Gash removal in configurations (v) and (vi).

7.4.2 Proof of Theorem 7.1.5

We are now in position to prove Theorem 7.1.5 by induction on G(C, 2). The case
G(C, 2) = 0 has been treated in Section 7.3.3. Assume that the identities (7.1.2) and
(7.1.3) hold for color maps C such that G(C, 2) ⩽ N and consider a color map C such
that G(C, 2) = N + 1.

Since G(C, 2) ⩾ 1, there exists a pair of edges (x, x − ξ4), (x + ξ4, x) ∈ (∂(2)
n )2 such that

C((x, x−ξ4)) = 0, C((x+ξ4, x)) = 1 for some x ∈ Tn. Let g be the gash on ∂(2)
n with center

x, original colors as above and new colors given by C((x, x− ξ4)) = 1, C((x+ ξ4, x)) = 0
as in Definition 7.4.1. Applying the propagation algorithm of Definition 7.4.3 and using
Proposition 7.4.4 yields a gash g′ adjacent to a configuration (v), (vi) or on ∂

(1)
n . In the

case of configurations (v) or (vi), apply the gash removal of Definition 7.4.5. In the case
where g′ ∈ ∂

(1)
n , replace the original colors by the new ones so that the 0 and 1 colors are

swapped. Call C ′ the resulting color map. Then,

G(C ′, 2) = G(C, 2) − 1 = N (7.4.1)
G(C ′, 0) = G(C, 0) (7.4.2)

In the case where one used gash removal,

G(C ′, 1) = G(C, 1), m(C ′) = m(C) − 1, and s(C ′) = s(C) + 1. (7.4.3)

whereas in the case where g′ ∈ ∂
(1)
n ,

G(C ′, 1) = G(C, 1) + 1, m(C ′) = m(C), and s(C ′) = s(C). (7.4.4)

In both cases, applying the induction hypothesis to C ′ gives

m(C ′) = G(C ′, 0) +G(C ′, 1) +G(C ′, 2) − n0n1 (7.4.5)
s(C ′) = 2n0n1 −G(C ′, 0) −G(C ′, 1) −G(C ′, 2) (7.4.6)

which gives

m(C) = G(C, 0) +G(C, 1) +G(C, 2) − n0n1 (7.4.7)
s(C) = 2n0n1 −G(C, 0) −G(C, 1) −G(C, 2) (7.4.8)
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as desired.

We finally state a Corollary of the main result which counts the number of faces hav-
ing all of their edges of the same color, either 0 or 1.

Corollary 7.4.6 (Number of triangular pieces). Let C be a color map. Let n(j), n(j), j ∈
{0, 1} denote respectively the number of direct and reverse triangular faces f ∈ Fn having
all their edges of color j. Then,

n(j) = nj(nj + 1)
2 and n(j) = nj(nj − 1)

2 . (7.4.9)

Proof. One can check that the gash propagation and removal steps preserve the number
of faces f having edge colors (0, 0, 0) or (1, 1, 1). It therefore suffices to count them in a
reduced color map which gives (7.4.9).
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Chapitre 8

La théorie des matrices aléatoires

Cette thèse s’inscrit dans la théorie des matrices aléatoires, un domaine issu de l’analyse
de données et des modèles statistiques pour les atomes lourds. Les origines de la théorie
des matrices aléatoires remontent aux travaux de Wishart [Wis28] en statistique, puis
à ceux de Wigner [Wig55], qui introduisit les matrices aléatoires dans le contexte de la
mécanique quantique pour les atomes lourds. Wigner fut le premier à étudier les matri-
ces de grande dimension, notamment dans le régime asymptotique où la dimension tend
vers l’infini. Mehta a fortement influencé le domaine dans les années 1960, en posant
les bases d’une théorie spectrale avec la première édition de son ouvrage [Meh04]. Le
domaine s’est ensuite élargi avec les travaux de Marchenko et Pastur [MP68] en 1967,
portant sur le spectre des matrices de covariance. Avec le temps, des techniques issues de
l’analyse complexe, de la combinatoire et de la théorie du potentiel ont enrichi la théorie
des matrices aléatoires. Une avancée majeure a été l’introduction des probabilités libres
par Voiculescu [Voi86] dans les années 1980, permettant une meilleure compréhension du
comportement asymptotique des grandes matrices aléatoires. Depuis les années 1990, le
domaine a connu des progrès dans l’étude des valeurs propres extrêmes, des grandes dévi-
ations et des théorèmes limites pour les statistiques linéaires. Des questions d’universalité
concernant le comportement des grandes matrices aléatoires ont émergé, certaines restant
encore ouvertes à ce jour.

Ce chapitre a pour objectif de fournir un aperçu général de la théorie des matrices aléa-
toires. Il est composé de deux sections. La section 8.1 introduit les définitions fonda-
mentales ainsi que plusieurs observables pertinents pour l’étude des matrices aléatoires.
Elle présente également des exemples de matrices aléatoires, qui joueront un rôle central
dans l’ensemble de cette thèse. La section 8.2 expose les deux principaux résultats de
convergence des valeurs propres, concernant respectivement les matrices hermitiennes et
les matrices à coefficients indépendants et identiquement distribués (i.i.d.), à savoir la
loi semi-circulaire et la loi circulaire. Les principales références pour ce chapitre sont les
ouvrages [Meh04; AGZ10; BS06; MS17], ainsi que les notes de cours [Spe20].

8.1 Matrices aléatoires

Cette section est une introduction aux matrices aléatoires avec des exemples de modèles
qui interviennent dans cette thèse. Nous suivons principalement la référence [BS06].
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8.1.1 Mesure spectrales de matrices aléatoires

Soit (Ω,F ,P) un espace de probabilité. Pour tout n ⩾ 1, on note Mn(C) l’espace des
matrices de taille n× n à coefficients complexes.

Definition 8.1.1 (Matrice aléatoire). Une matrice aléatoire de taille n ⩾ 1 est une variable
aléatoire A = (aij)1⩽i,j⩽n à valeurs dans Mn(C).

Une mesure naturelle associée à une matrice (non nécessairement aléatoire) est la mesure
uniforme sur ses valeurs propres. Nous appelons cette mesure la distribution empirique
des valeurs propres, ou la mesure spectrale, de la matrice.

Definition 8.1.2 (Distribution empirique des valeurs propres). Soit A ∈ Mn(C) une
matrice de taille n ⩾ 1. Notons λ1(A), . . . , λn(A) ses valeurs propres, comptées avec
leurs multiplicités. La distribution empirique des valeurs propres de A est la mesure de
probabilité µn(A) sur C définie par

µn(A) := 1
n

n∑
k=1

δλk(A) . (8.1.1)

La distribution empirique des valeurs propres est supportée sur au plus n atomes distincts,
situés aux valeurs propres de A, chacun ayant un poids proportionnel à la multiplicité de
la valeur propre associée.

On définit P(C) comme l’espace des mesures de probabilité sur C. Dans le cas où la
matrice An est une matrice aléatoire de taille n, la mesure µn(An) est une variable aléa-
toire à valeurs dans P(C). On remarque que l’espace P(C) ne dépend pas de n, la taille de
la matrice, ce qui permet de considérer les distributions empiriques des valeurs propres de
matrices de tailles différentes comme des variables aléatoires appartenant au même espace.

8.1.2 Archétypes de matrices aléatoires

La définition d’une matrice aléatoire est générale car les coefficients peuvent avoir des
corrélations et des lois de probabilité arbitraires. Nous verrons que le comportement
des matrices aléatoires varie selon la dépendance structurelle de leurs coefficients. Nous
présentons ici un aperçu des archétypes classiques de matrices aléatoires, comme exemples
introductifs.

Matrices de Girko

L’exemple le plus simple de matrice aléatoire est celui où les coefficients sont des vari-
ables aléatoires indépendantes et identiquement distribuées (i.i.d.). De telles matrices
sont appelées matrices de Girko, d’après les travaux de Girko [Gir18; Gir84].

Definition 8.1.3 (Matrice de Girko). Soit A = (aij)i,j⩾1 une famille de variables aléatoires
i.i.d. La matrice An = (aij)1⩽i,j⩽n est appelée une matrice de Girko de taille n.

La définition 1.1.3 fixe les relations de dépendance dans la matrice aléatoire, mais reste très
générale, car la loi commune des coefficients n’est pas précisée. Les premières occurrences
de matrices à coefficients i.i.d. remontent aux travaux de Ginibre [Gin65], qui considérait
le cas particulier où les coefficients suivent une loi normale complexe. Rappelons que la
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loi normale, ou gaussienne, de paramètres m et σ est définie comme la loi de probabilité
ayant pour densité :

f(x) = 1√
2πσ

exp
(

−(x−m)2

2σ2

)
par rapport à la mesure de Lebesgue dx sur R. On la note N (m,σ2). On étend cette
définition à C en prenant des parties réelle et imaginaire indépendantes.

Definition 8.1.4 (Loi normale complexe). Soient Y et Z deux variables aléatoires réelles
indépendantes suivant la loi N (0, 1

2). La loi normale complexe est la loi de la variable
aléatoire X = Y + iZ. On la note NC(0, 1). On dit que X est une gaussienne complexe
standard.

Une autre façon de décrire la loi normale complexe est de spécifier la densité 1
π e−|z|2 par

rapport à la mesure de Lebesgue dz sur C. On peut donc considérer des matrices de
Girko dont les coefficients suivent une loi normale complexe. Ce cas particulier est appelé
ensemble de Ginibre.

Definition 8.1.5 (Ensemble de Ginibre). L’ensemble de Ginibre de taille n ⩾ 1 est la loi
d’une matrice de Girko An = (aij)1 ⩽ i, j ⩽ n dont les coefficients aij sont des gaussiennes
complexes standards. De manière équivalente, la loi de An sur Mn(C) est donnée par :

dPn[A] := 1
πn2 exp (− Tr [AA∗]) dA , (8.1.2)

où dA est la mesure de Lebesgue sur Mn(C) et A∗ est l’adjoint de A.

L’ensemble de Ginibre possède une structure riche. C’est le premier modèle intégrable
présenté ici, au sens où le fait de travailler avec la loi normale complexe permet d’effectuer
de nombreux calculs explicites. Le premier exemple d’un tel calcul explicite est la loi jointe
des valeurs propres d’une matrice de Ginibre, obtenue par Ginibre [Gin65].

Proposition 8.1.6 (Densité des valeurs propres de Ginibre, [Gin65]). Soit An une matrice
de Ginibre de taille n ⩾ 1. Alors, ses valeurs propres (λ1, . . . , λn) ont une loi jointe sur
Cn donnée par :

1
Zn

∏
i<j

|λi − λj |2e−
∑n

i=1 |λi|2dλ , (8.1.3)

où dλ est la mesure de Lebesgue sur Cn et où Zn est une constante de normalisation.

Matrices de Wigner

La théorie des matrices aléatoires a joué un rôle fondamental dans le développement de la
mécanique quantique entre 1940 et 1950. Dans ce contexte, la motivation était de mod-
éliser les noyaux lourds à l’aide d’un hamiltonien discrétisé représenté par une matrice.
L’hamiltonien discrétisé satisfait certaines hypothèses de symétrie ce qui impose une con-
dition d’hermiticité à la matrice discrétisée. Il est donc naturel de considérer des matrices
aléatoires hermitiennes. De telles matrices sont appelées matrices de Wigner, d’après les
travaux de Wigner [Wig55]. Pour n ⩾ 1, on note Hn l’espace des matrices hermitiennes
de taille n.

Definition 8.1.7 (Matrice de Wigner). Soit A = (aij)1⩽i⩽j une famille de variables
aléatoires indépendantes et soit n ⩾ 1. On appelle matrice de Wigner de taille n la
matrice An = (aij)1⩽i,j⩽n telle que pour i ⩾ j, on ait aij = aji.
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Comme dans la définition 1.1.3, la définition d’une matrice de Wigner ne précise pas la
loi de probabilité des éléments situés au-dessus de la diagonale. L’exemple le plus célèbre
est celui où les coefficients strictement au-dessus de la diagonale sont des gaussiennes
complexes standards, et ceux sur la diagonale sont des gaussiennes réels standards. Ce
cas particulier est appelé ensemble unitaire gaussien (GUE).

Definition 8.1.8 (Ensemble unitaire gaussien). L’ensemble unitaire gaussien (GUE) de
taille n ⩾ 1 est la loi de la matrice de Wigner dont les coefficients aij pour j > i suivent
la loi NC(0, 1), et dont les éléments diagonaux aii sont des gaussiennes réelles standards
indépendants. De manière équivalente, la loi de An sur Hn est donnée par :

dPn[A] := 1
Zn

exp
(

−1
2 Tr

[
A2
])

dA (8.1.4)

où dA est la mesure de Lebesgue sur Hn.

Le nom de cet ensemble vient du fait que la loi d’une matrice du GUE est invariante
par conjugaison unitaire. L’ensemble GUE peut être vu comme l’analogue hermitien de
l’ensemble de Ginibre. En effet, si A est une matrice de Ginibre, alors X = A+A∗

√
2 est une

matrice du GUE. Inversement, si X et Y sont deux matrices du GUE indépendantes, alors
A = 1√

2X + i 1√
2Y est une matrice de Ginibre.

Comme dans le cas de l’ensemble de Ginibre, la loi jointe des valeurs propres d’une matrice
du GUE est connue. On notera que la condition d’hermiticité implique que les valeurs
propres sont réelles.

Proposition 8.1.9 (Loi des valeurs propres du GUE [AGZ10]). Soit An une matrice GUE
de taille n ⩾ 1. Alors ses valeurs propres (λ1, . . . , λn) ont une loi jointe donnée par :

1
Zn

∏
i<j

|λi − λj |2e− 1
2
∑n

i=1 λ
2
i dλ (8.1.5)

où dλ est la mesure de Lebesgue sur Rn et Zn est une constante de normalisation.

Matrices unitaires

Pour n ⩾ 1, considérons le groupe unitaire

U(n) = {U ∈ Mn(C) | UU∗ = U∗U = idCn}.

C’est un sous-groupe topologique compact de Mn(C), ce qui signifie que, en plus de sa
structure de groupe, U(n) est un espace topologique pour lequel la multiplication ma-
tricielle · : U(n) × U(n) → U(n), (x, y) 7→ x · y et l’inversion −1 : U(n) → U(n), x 7→ x−1

sont des applications continues. L’étude des matrices unitaires aléatoires a été initiée par
Dyson [Dys62], qui a étudié des cas intégrables appelés ensembles circulaires, voir aussi
les travaux de Girko [Gir85].
Sur les groupes topologiques, on dispose de la notion de mesure de Haar qui est l’analogue
de la mesure uniforme. Nous suivons ici l’approche du chapitre 5 de [Far08].

Definition 8.1.10 (Mesure invariante à gauche). Soit G un groupe localement compact.
Une mesure de Radon µ ⩾ 0 sur G est dite invariante à gauche si, pour tout h ∈ G et
toute fonction continue f sur G à support compact,∫

G
f(hg)µ(dg) =

∫
G
f(g)µ(dg)
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Nous énonçons le théorème principal du chapitre 5 de [Far08], qui affirme qu’il existe une
unique mesure invariante à gauche sur G, à un facteur positif près. Cette mesure est
appelée mesure de Haar à gauche sur G.

Theorem 8.1.11 (Existence de la mesure de Haar, [Far08]). Tout groupe localement
compact admet une mesure invariante à gauche. De plus, une telle mesure est unique à
un facteur multiplicatif près.

Nous désignerons par la mesure de Haar sur G la mesure invariante à gauche µ sur G
dont la masse totale vaut un, c’est-à-dire telle que µ(G) = 1. Revenons au groupe unitaire
G = U(n). On dispose d’une construction explicite de la mesure de Haar comme suit. Soit
An une matrice de Ginibre de taille n. On applique à An la procédure d’orthonormalisation
de Gram-Schmidt. Alors, la loi de la matrice unitaire ainsi obtenue, dont les colonnes sont
orthonormées, est la mesure de Haar. L’invariance par multiplication par des matrices de
permutation, qui sont des cas particuliers de matrices unitaires, implique que les coeffi-
cients d’une matrice de Haar ont tous la même loi.

Les valeurs propres d’une matrice unitaire sont situées sur le cercle unité

S1 = {z ∈ C : |z| = 1} .

Pour une matrice aléatoire U suivant la mesure de Haar, il est naturel de s’intéresser à la
loi jointe de ses valeurs propres. Nous paramétrons ces valeurs propres par leurs angles,
de sorte que λk = eiθk pour 1 ⩽ k ⩽ n et θk ∈ [0, 2π). La densité jointe peut être calculée
explicitement, et l’on renvoie à la référence [HP00] pour une démonstration.

Theorem 8.1.12 (Densité jointe des valeurs propres des matrices unitaires de Haar,
[HP00]). Pour n ⩾ 1 et Un distribué selon la mesure de Haar sur U(n), la loi jointe de
(θ1, . . . , θn) admet la densité

f(θ1, . . . , θn) = 1
Zn

∏
j<ℓ

|eiθj − eiθℓ |2. (8.1.6)

Il existe une généralisation de (8.1.6) à un paramètre β > 0. Ces lois sont appelées
ensembles circulaires β, voir [DG04].

Definition 8.1.13 (Ensemble circulaire β). Fixons β > 0 et n ⩾ 1. L’ensemble circulaire
β est la distribution de probabilité sur [0, 2π)n donnée par

dPβ,n[θ] := 1
Zβ,n

∏
j<ℓ

|eiθj − eiθℓ |βdθ. (8.1.7)

Pour β = 2, on retrouve la distribution des valeurs propres des matrices unitaires aléa-
toires de Haar, également appelée ensemble unitaire circulaire. Pour β = 1 et β = 4, la
distribution (8.1.7) correspond respectivement aux valeurs propres de matrices aléatoires
de Haar dans les groupes orthogonal et symplectique.

Matrices de permutation

Cette section traite des matrices de permutation aléatoires, qui constituent des cas par-
ticuliers de matrices orthogonales aléatoires. Pour n ⩾ 1, notons Sn le groupe des per-
mutations de [n] = {1, . . . , n}. Pour une permutation σ ∈ Sn, sa matrice de permutation
associée est A = A(σ) = (aij)1⩽i,j⩽n, où pour 1 ⩽ i, j ⩽ n,

aij := 1σ(j)=i.
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On appelle matrice de permutation toute matrice qui peut s’écrire comme la matrice
associée à une permutation. La décomposition en cycles d’une permutation σ ∈ Sn est le
vecteur (Ck)1⩽k⩽n où Ck = Ck(σ) est le nombre de cycles de longueur k dans σ.
Pour k ⩾ 1, soit Bk ∈ Mk(C) la matrice k × k associée à la permutation ayant un seul
cycle (1 · · · k) :

Bk =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

... . . . . . . ...
0 0 · · · 1 0

 .

Toute matrice de permutation A = A(σ) pour un certain σ ∈ Sn est conjuguée à une
matrice par blocs comportant Ck(σ) blocs Bk pour chaque 1 ⩽ k ⩽ n. Par conséquent,
les valeurs propres d’une matrice de permutation A(σ) sont les racines de l’unité

e
2iπℓ
k , 0 ⩽ ℓ ⩽ k − 1

apparaissant chacune avec une multiplicité Ck(σ).

Une mesure définie sur l’ensemble des permutations induit naturellement une mesure sur
l’ensemble des matrices de permutation via l’application σ 7→ A(σ). Nous introduisons ici
une mesure importante sur Sn, appelée loi d’Ewens, introduite dans [Ewe72].

Definition 8.1.14 (Loi d’Ewens). La loi d’Ewens de paramètre θ > 0 est la mesure de
probabilité dPθ sur Sn définie par

dP(n)
θ [σ] := θ|σ|

Z
(n)
θ

, (8.1.8)

où |σ| =
∑n
k=1Ck(σ) désigne le nombre total de cycles dans la permutation σ, et Z(n)

θ est
une constante de normalisation.

Lorsque θ = 1, la loi d’Ewens coïncide avec la mesure uniforme sur Sn. Il s’agit d’un exem-
ple de mesure centrale, c’est-à-dire une mesure constante sur chaque classe de conjugaison
de Sn, les longueurs de cycles étant invariantes par conjugaison.

8.2 Convergence des mesures spectrales

Cette section présente des résultats de convergence des mesures spectrales lorsque la di-
mension des matrices tend vers l’infini. Les premières motivations pour considérer de tels
régimes limites remontent aux travaux de Wigner [Wig55; Eug58] dans le contexte de la
mécanique quantique. Wigner a démontré que, sous une normalisation appropriée, la dis-
tribution empirique des valeurs propres des matrices du GUE converge en moyenne vers
une loi limite, appelée loi du demi-cercle, voir le Théorème 8.2.1 ci-dessous. Ce résultat
a ensuite été généralisé par Arnold [Arn71; Arn67]. Dans le cas des matrices aléatoires
de type Girko, l’analogue de la loi du demi-cercle est la loi circulaire, qui correspond à
la loi uniforme sur le disque unité du plan complexe. La convergence en moyenne de la
distribution empirique des valeurs propres a d’abord été établie par Mehta [Meh67] pour
l’ensemble de Ginibre. Edelman a ensuite traité le cas particulier où les entrées sont des
variables gaussiennes réelles. Silverstein a étendu ces résultats en prouvant la convergence
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presque sûre pour les matrices de Ginibre. Ces premiers travaux s’appuyaient fortement
sur les formules explicites de densité jointe des valeurs propres dans le cas gaussien. Une
approche plus générale, visant à étendre ces résultats à des distributions non gaussiennes, a
été initiée par Girko [Gir84] puis développée par Bai [Bai97]. La version la plus générale a
finalement été obtenue par Tao et Vu [TV08], en collaboration avec Krishnapur [TVK10].

8.2.1 Convergence de mesures aléatoires

Rappelons que la distribution empirique des valeurs propres d’une matrice An de valeurs
propres (λi)1⩽i⩽n est la mesure de probabilité

µn = 1
n

n∑
i=1

δλi .

On munit l’espace P(C) des mesures de probabilité sur C de la topologie de la convergence
faible, définie par rapport aux fonctions continues et bornées. La convergence faible d’une
suite (µn)n⩾1 vers une mesure limite µ sera notée µn =⇒ µ. Pour des mesures aléatoires,
on dit que µn converge faiblement vers µ presque sûrement si

µn =⇒ µ presque sûrement,

ce qui signifie que, avec probabilité un, pour toute fonction continue et bornée f ,∫
fdµn →

∫
fdµ.

Pour une mesure aléatoire µ, on note E[µ] la mesure de probabilité définie par

E[µ](B) = E[µ(B)]

pour tout borélien B. Dans le cas où µ est la distribution empirique des valeurs propres,
la mesure E[µ], qui est une mesure déterministe, est appelée la distribution moyenne des
valeurs propres.

8.2.2 Matrices de Wigner et loi du demi-cercle

Dans cette section, nous nous concentrons sur les matrices de Wigner telles que définies en
8.1.7. Nous présentons une version générale du résultat de convergence de la distribution
empirique des valeurs propres pour ces matrices que l’on peut trouver dans [BS06].

Theorem 8.2.1 (Loi du demi-cercle de Wigner, [BS06]). Soit An une matrice de Wigner
de taille n telle que les entrées au-dessus de la diagonale aient une variance unitaire. On
suppose que toutes les entrées sont centrées. Alors, presque sûrement,

µn

( 1√
n
An

)
=⇒ µs.c

où
µs.c(dx) := 1

2π
√

4 − x21|x|<2dx.

La mesure limite µs.c est appelée la loi du demi-cercle, voir Figure 8.1. Le Théorème 8.2.1
constitue le premier exemple d’ universalité, puisqu’il est valable pour toute paire de lois,
pour la diagonale et hors-diagonale, tant que cette dernière a une variance unitaire.



204 CHAPITRE 8. LA THÉORIE DES MATRICES ALÉATOIRES

Figure 8.1: Illustration du Théorème 8.2.1. Valeurs propres d’une matrice GUE normalisée
de taille 103. La densité de la loi du demi-cercle est tracée en rouge.

Remark 8.2.2. Donnons quelques remarques :

1. Dans le cas où les entrées hors diagonale ont une variance générale σ2 > 0, la loi
limite obtenue est la loi du demi-cercle dilatée, de densité

1
2πσ2

√
4σ2 − x21|x|<2σdx.

2. L’hypothèse d’identicité des lois des entrées peut être relâchée. Considérons une
matrice de Wigner dont les entrées diagonales et hors diagonales sont indépendantes
mais pas nécessairement identiquement distribuées et où la loi de chaque entrée peut
dépendre de n. Si la condition suivante est vérifiée :

∀η > 0 lim
n→∞

1
n2

n∑
j,k=1

E
[
|a(n)
jk |21|a(n)

jk
|⩾η

√
n

]
,

alors la conclusion du Théorème 8.2.1 reste valable.

3. La condition sur le moment d’ordre deux des entrées hors-diagonales est à la fois
nécessaire et suffisante dans le Théorème 8.2.1. Dans le cas d’entrées à queues
lourdes, la distribution empirique des valeurs propres converge vers d’autres lois
dépendant du paramètre de la loi stable. Nous renvoyons à [BC94], [BDG09] et
[BCC11] pour plus de détails.

8.2.3 Matrices de Girko et loi circulaire

Cette section présente l’analogue du théorème de Wigner pour les matrices de Girko, c’est-
à-dire les matrices à coefficients i.i.d. sans condition d’hermiticité. La version générale
suivante peut être trouvée dans [TVK10], voir aussi [BC12] pour plus de détails.
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Theorem 8.2.3 (Loi circulaire, [TVK10]). Soit An = (aij)1⩽i,j⩽n où (aij)i,j⩾1 sont des
variables aléatoires i.i.d. telles que E[aij ] = 0 et E[|aij |2] = 1. Alors, presque sûrement,

µn

( 1√
n
An

)
=⇒ µc, (8.2.1)

où
µc(dz) := 1

π
1|z|<1dz.

Figure 8.2: Illustration du Théorème 8.2.3. Valeurs propres d’une matrice de Ginibre
normalisée de taille 500. Le cercle unité est représenté en rouge.

La mesure de probabilité µc(dz) = 1
π1|z|<1dz est appelée la loi circulaire, ou loi du cercle.

Elle peut être vue comme l’analogue non hermitien de la loi du demi-cercle. La démon-
stration du Théorème 8.2.3 repose sur la technique d’hermitisation, introduite par Girko
[Gir84]. Nous renvoyons à [BC12] et [TVK10; TV08] pour l’utilisation de cette technique
afin d’obtenir le Théorème 8.2.3.



206 CHAPITRE 8. LA THÉORIE DES MATRICES ALÉATOIRES



Chapitre 9

Polynômes caractéristiques

Ce chapitre est consacré aux polynômes caractéristiques de matrices aléatoires. Contraire-
ment au chapitre précédent, qui étudie les valeurs propres via la mesure spectrale, cette
approche considère le polynôme caractéristique comme une fonction aléatoire. Sous une
normalisation appropriée, l’objectif est d’établir sa convergence vers une fonction analy-
tique limite.

L’étude des polynômes caractéristiques en théorie des matrices aléatoires est double. D’une
part, il est possible de partir d’un modèle de matrice aléatoire donné et d’établir la con-
vergence de son polynôme caractéristique. Cela permet d’obtenir des informations sur
les propriétés spectrales de la matrice. Au-delà de l’analyse spectrale, les limites de ces
polynômes font intervenir des fonctions aléatoires remarquables. Par exemple, dans le
cas des matrices de Girko centrées, la fonction limite est l’exponentielle d’une fonction
analytique gaussienne sur le plan complexe qui a été étudiée indépendamment, voir par
exemple [Hou+09].

Une seconde approche consiste à utiliser les polynômes caractéristiques pour reformuler
des problèmes existants en les reliant à des matrices aléatoires bien choisies. Cette méth-
ode a été employée par Keating et Snaith [KS00], qui ont établi un lien entre le polynôme
caractéristique des matrices unitaires de Haar et la fonction Zêta de Riemann. Leur travail
a conduit à une conjecture sur les moments de la fonction Zêta, motivée par la conjecture
de Montgomery [Mon73] en théorie analytique des nombres et les travaux de Rudnick et
Sarnak [RS96] sur les liens entre les zéros des fonctions L et les matrices aléatoires. Les
polynômes caractéristiques apparaissent également dans d’autres contextes, notamment en
physique statistique où ils sont reliés aux gaz à corrélation logarithmique et aux champs
gaussiens, voir [BK22] pour ces derniers aspects.

9.1 Polynômes caractéristiques aléatoires et traces
L’objet central de ce chapitre est le polynôme caractéristique

pn(z) := det (In − zAn)
d’une matrice aléatoire An. Nous cherchons à étudier sa convergence en tant que variable
aléatoire à valeurs dans l’espace des fonctions holomorphes, muni de la topologie de la
convergence uniforme locale. Les coefficients (c(n)

k )0⩽k⩽n de pn, définis par

pn(z) =
n∑
k=0

c
(n)
k zk,

207
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sont appelés les coefficients séculiers. Ils sont reliés aux traces des puissances de An via

c
(n)
k = Pk

(
Tr[An], . . . ,Tr

[
Akn

])
où (Pk)k⩾0 est une famille de polynômes indépendante de n. Ainsi, l’étude des coefficients
séculaires et des polynômes caractéristiques peut se ramener à celle de la convergence
des traces (Tr[Akn])k⩾1. On peut également mettre en évidence ce lien avec les traces en
développant le logarithme :

log pn(z) = −
∑
k⩾1

zk

k
Tr
[
Akn

]
(9.1.1)

comme identité formelle. Si l’on montre la convergence jointe des traces dans (9.1.1) vers
une certaine famille de coefficients, un candidat naturel pour la fonction limite est la
fonction analytique ayant cette famille comme coefficients. Ce point de vue a été utilisé
dans divers contextes, voir par exemple [BCG22; Cos23; CLZ24; NPS23]. Comme nous le
verrons dans les résultats ci-dessous, les fonctions limites des polynômes caractéristiques de
grandes matrices présentent souvent une structure impliquant l’exponentielle d’une série
entière aléatoire.

9.2 Contributions
Nous présentons ici nos contributions concernant la convergence des polynômes caractéris-
tiques pour deux modèles intégrables, décrits dans les Sections 9.2.1 et 9.2.2, correspondant
aux articles [FG23] et [Fra25], qui font respectivement l’objet des Chapitres 4 et 5.

9.2.1 Polynôme caractéristique de matrices elliptiques gaussiennes

Les matrices aléatoires que nous considérons dans cette section sont issues de l’ensemble
de Ginibre elliptique complexe, introduit par Girko dans [Gir86]. Ce modèle est paramétré
par un réel t ∈ [0, 1] et interpole entre l’ensemble de Ginibre (Définition 8.1.5) et l’ensemble
unitaire gaussien (Définition 8.1.8) pour t = 0 et t = 1 respectivement. Sa loi est celle
d’une matrice aléatoire construite comme suit : Soient Xn et Yn deux matrices aléatoires
indépendantes de l’ensemble unitaire gaussien de taille n ⩾ 1. La loi de l’ensemble de
Ginibre elliptique au paramètre t ∈ [0, 1] est celle de la matrice

An,t =
√

1 + t

2 Xn + i

√
1 − t

2 Yn, (9.2.1)

où i est le complexe de module un et de phase π
2 . De manière équivalente, An,t admet une

densité proportionnelle à

exp
(

− 1
1 − t2

Tr
[
M∗M − t

2
(
M2 + (M∗)2

)])
dM, (9.2.2)

où dM =
∏

1⩽i,j⩽n dMij est la mesure de Lebesgue produit sur les coefficients de la matrice.
La distribution limite des valeurs propres a été obtenue par Girko [Gir86]. Il s’agit de la
loi uniforme sur l’ellipse

Et :=
{
x+ iy ∈ C |

(
x

1 + t

)2
+
(

y

1 − t

)2
⩽ 1

}
.
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On définit la fonction fn,t : D → C comme le polynôme caractéristique normalisé de An,t,

fn,t(z) := det
(

1 + tz2 − z√
n
An,t

)
e−ntz2

2 . (9.2.3)

On munit l’espace des fonctions holomorphes sur D de la topologie de la convergence
uniforme sur les compacts. Notre résultat principal est la convergence suivante.

Theorem 9.2.1 (Convergence du polynôme caractéristique normalisé). On a la conver-
gence en loi, pour la topologie de la convergence locale uniforme,

fn,t
loi−→

n→∞
exp(−Ft)

où Ft est une fonction holomorphe gaussienne sur D définie par

Ft(z) :=
∑
k⩾1

Xk
zk√
k

(9.2.4)

pour une famille (Xk)k⩾1 de variables aléatoires gaussiennes complexes indépendantes,
vérifiant

E[Xk] = 0, E[X2
k ] = tk et E[|Xk|2] = 1.

En particulier, pour t = 1, le Théorème 9.2.1 montre que le polynôme caractéristique des
matrices de type GUE, convenablement normalisé, converge vers une fonction holomorphe
aléatoire. À partir de ce théorème, on déduit l’absence de valeurs propres hors de l’ellipse,
ce qui est l’analogue elliptique de la convergence du rayon spectral des matrices de Girko
obtenue dans [BCG22].

Corollary 9.2.2 (Absence d’outliers). Soit C ⊂ C un ensemble fermé disjoint de Et.
Alors, lorsque n → ∞, nous avons la convergence en probabilités

Nn(C) := #
{
i ∈ [n] : λi√

n
∈ C

}
P−→

n→∞
0. (9.2.5)

On s’attend à ce que la convergence du Théorème 9.2.1 s’étende dans un cadre beaucoup
plus général, comme conjecturé dans [BCG22], voir la Section 9.3.1. La limite dépendrait
uniquement des quatre premiers moments des coefficients de la matrice aléatoire. Un
aperçu de cette universalité peut être observé lorsqu’on calcule l’espérance du polynôme
caractéristique, qui dépend uniquement de t = E[a12a21]. On a alors la convergence
suivante pour l’espérance du polynôme caractéristique des matrices elliptiques.

Theorem 9.2.3 (Polynôme caractéristique moyen). Soit An,t = (aij , 1 ⩽ i, j ⩽ n) une
matrice aléatoire telle que {(aij , aji), 1 ⩽ i < j ⩽ n} soient des paires i.i.d. centrées et
indépendantes de la famille i.i.d. centrée {aii, 1 ⩽ i ⩽ n}, avec E[|aij |2] < ∞ pour tout
1 ⩽ i, j ⩽ n et E[a12a21] = t ∈ [0, 1]. Alors, pour z uniformément dans D,

lim
n→+∞

E
[
det

(
1 + tz2 − z√

n
An,t

)
e−ntz2

2

]
= 1√

1 − tz2
. (9.2.6)

9.2.2 Polynôme caractéristique de matrices d’Ewens

Dans cette section, nous considérons des matrices de permutation distribuées selon la
mesure d’Ewens généralisée, introduite par Nikeghbali et Zeindler [NZ13], qui généralise
la mesure d’Ewens (8.1.8). Rappelons que pour une permutation σ ∈ Sn et k ⩾ 1, Ck(σ)
est le nombre de cycles de σ de longueur k.
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Definition 9.2.4 (Mesure d’Ewens généralisée, [NZ13]). Soit Θ = (θk)k⩾1 une suite de
réels strictement positifs. Pour n ⩾ 1, la mesure d’Ewens généralisée est la mesure de
probabilité dPΘ

n sur Sn définie par

dPΘ
n [σ] := 1

n!hΘ
n

n∏
k=1

θ
Ck(σ)
k . (9.2.7)

À partir de la suite Θ = (θk)k⩾1, on définit la série formelle comme dans [NZ13],

gΘ(z) :=
∑
k⩾1

θk
k
zk et GΘ(z) := exp(gΘ(z)) (9.2.8)

Pour n ⩾ 1 et Θ = (θk)k⩾1 comme ci-dessus, on considère An la matrice aléatoire associée
à une permutation σ distribuée selon (9.2.7). Considérons son polynôme caractéristique

pn(z) = det(1 − zAn) (9.2.9)

dans le disque unité z ∈ D = {x ∈ C : |x| < 1}. Notons H(D) l’espace des fonctions
holomorphes sur D, muni de la topologie de la convergence uniforme sur les compacts de D.
Notre résultat principal est la convergence de pn, en tant que variable aléatoire dans H(D),
en loi vers une fonction limite F ∈ H(D). Cette convergence a lieu pour des paramètres
Θ tels que la série génératrice gΘ vérifie certaines conditions que nous définissons ci-après.
Il s’agit d’une adaptation d’une définition donnée dans la Section 5.2.1 de [Hwa94]. On
peut également la retrouver en tant que Définition 2.9 dans [Hug+13] ou Définition 2.8
dans [NZ13].
Definition 9.2.5 (Fonction de classe logarithmique). Une fonction g est dite appartenir
à F (r, γ,K) pour r > 0, γ ⩾ 0 et K ∈ C si :

• Il existe R > r et ϕ ∈ (0, π/2) tels que g est holomorphe dans ∆(r,R, ϕ) \ r où
∆(r,R, ϕ) = {z ∈ C : |z| ⩽ R, | arg(z − r)| ⩾ ϕ}.

• Lorsque z → r, g(z) = −γ log(1 − z/r) +K +O(z − r).
Dans le cas de la mesure d’Ewens (8.1.8) de paramètre θ, on a gΘ(z) = −θ log(1 − z) et
gΘ ∈ F (1, θ, 0). Notons que si γ > 0, alors le paramètre r > 0 est unique.

Notre résultat principal est le Théorème 9.2.6, qui donne la convergence du polynôme
caractéristique vers une fonction limite pour les suites Θ telles que g est de classe loga-
rithmique.
Theorem 9.2.6 (Convergence du polynôme caractéristique). Soit Θ = (θk)k⩾1 une suite
de réels strictement positifs telle que gΘ ∈ F (r, γ,K) où r > 0 et γ > 0. On a la
convergence en loi, pour la topologie de la convergence uniforme locale dans D

pn
loi−→

n→∞
F, (9.2.10)

où

F (z) = exp

−
∑
k⩾1

zk

k
Xk

 , Xk =
∑
ℓ|k

ℓYℓ, (9.2.11)

avec (Yℓ)ℓ⩾1 des variables aléatoires de Poisson indépendantes de paramètre θℓ
ℓ r

ℓ.
Le théorème précédent donne en particulier la convergence du polynôme caractéristique
pour les matrices de permutation d’Ewens. En effet, pour le paramètre Θ ≡ θ constant,
la fonction gΘ est dans la classe F (1, θ, 0) et donc pn converge vers une fonction limite
comme conjecturé dans [CLZ24].
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9.3 Questions ouvertes

9.3.1 Conditions de moment minimales et universalité

Comme conjecturé dans [BCG22], la convergence dans le Théorème 9.2.1 du polynôme
caractéristique normalisé devrait être valable sous la condition minimale de moment

E
[
|a12a21|2

]
< ∞

sur les entrées (aij)i,j⩾1, ce qui donne une condition de moment d’ordre quatre pour les
matrices de Wigner et d’ordre deux pour les matrices de Girko. Le cadre adapté à cette
conjecture est celui des matrices aléatoires elliptiques [NO15, Definition 1.3]. Ce modèle a
été introduit par Girko dans [Gir86] et [Gir95] et consiste en les matrices suivantes. Con-
sidérons une famille (aij)i,j⩾1 de variables aléatoires centrées et de carré intégrable, telle
que {(aij , aji) : i < j} ∪ {aii : i ⩾ 1} soit une famille indépendante de variables aléatoires,
et dont la loi est invariante par permutation des indices ou, de manière équivalente, la loi
de (aij , aji) coïncide avec celle de (ai′j′ , aj′i′) si |{i, j}| = |{i′, j′}|. Pour

E[|a12|2] = 1 and E[a12a21] = t,

la matrice An = (aij)1⩽i,j⩽n est dite t-Girko. La convergence de la mesure spectrale vers
la distribution uniforme sur l’ellipse a été démontrée sous différentes conditions sur les
variables, voir [NO15; OR14; Nau13]. Nous nous attendons à ce que la version suivante
du Théorème 9.2.1 soit valable pour les matrices t-Girko générales décrites ci-dessus. En
notant τ = E[a2

12], s = E[a2
11] − t − τ et q = E[(a12a21 − t)2] − t2 − τ2, la limite de

det
(
1 + tz2 − z

An,t√
n

)
exp(−ntz2/2) devrait être donnée par :

√
1 − τz2e−sz2/2e−qz4/4e−

∑
k⩾1 Yk

zk√
k

où (Yk)k⩾1 sont des variables aléatoires gaussiennes complexes centrées telles que Y1 a la
même variance que a11, Y2 a la même variance que a12a21, et, pour k ⩾ 3, la variance
de Yk est la somme de la puissance k de la variance de a12 et de la puissance k de la
covariance de a12 et a21, c’est à dire, E[Y 2

k ] = E[a2
12]k + E[a12a21]k = τk + tk et E[|Yk|2] =

E[|a12|2]k + E[a12a21]k = 1 + E[a12a21]k.

9.3.2 Matrices à coefficients dans {0, 1}

Dans le travail [Cos23], une convergence du polynôme caractéristique a été obtenue pour
des matrices dont les coefficients sont des variables de Bernoulli indépendantes avec es-
pérance non nulle. La fonction holomorphe aléatoire limite peut être exprimée à l’aide de
variables de Poisson. On pourrait s’interroger sur l’existence d’un analogue de l’ensemble
de Ginibre elliptique pour de telles matrices, ainsi que sur la convergence de leur polynôme
caractéristique.

9.3.3 Gaz de Coulomb déterminantaux

La convergence du Théorème 9.2.1 est une première étape vers la convergence du polynôme
caractéristique en dehors du support de la mesure d’équilibre pour des matrices aléatoires
elliptiques générales. Néanmoins, une autre approche aurait pu être suivie, consistant à
considérer l’ensemble de Ginibre elliptique comme un cas particulier de gaz de Coulomb
déterminantal. Dans cette perspective, il pourrait être possible de démontrer la con-
vergence des traces en adaptant les résultats de [AHM15], et de montrer la tension du
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polynôme caractéristique en dehors du support de la mesure d’équilibre pour des gaz de
Coulomb déterminantaux plus généraux en utilisant, par exemple, les résultats de [AC23].

9.3.4 Polynôme caractéristique à l’intérieur du support

Le Théorème 9.2.6 montre la convergence du polynôme caractéristique en dehors du sup-
port de la mesure spectrale limite. On peut s’interroger sur une étude similaire à l’intérieur
de la région où se trouvent les valeurs propres, c’est-à-dire sur la limite de log pn(z) pour
z situé à l’intérieur du support limite. Le développement du logarithme donne

log pn(z) =
n∑
k=1

log(1 − zλk,n) = n

∫
log(1 − zu)µn(du)

de sorte que l’analyse asymptotique peut être vue comme un théorème central limite pour
la statistique logarithmique. Les limites des fluctuations de log |pn(z)| pour les matrices
de Ginibre à l’intérieur du disque unité ont été établies comme étant gaussiennes [RV07] et
le champ limite dans le bulk est le champ libre gaussien. Comme suggéré par les résultats
de Webb et Wong [WW19], l’échelle de fluctuations serait différente comparée à celle de
la région extérieure. Des théorèmes centraux limites pour les statistiques linéaires ont
été démontrés par Rider et Silverstein pour les matrices de Girko complexes générales
[RS06] et par [CES21] dans le cas à entrées réelles, sous des hypothèses de régularité sur
les fonctions test. Dans une autre direction universelle, des résultats de fluctuations ont
été établis pour les statistiques linéaires des gaz de Coulomb [LS18; Bau+19], où le champ
limite est également le champ libre gaussien.

9.3.5 Fluctuations des parties réelles

Une autre direction serait d’étudier les fluctuations des parties réelles des valeurs propres
des matrices issues de l’ensemble de Ginibre elliptique. Pour des matrices du GUE, il est
connu suite au travail de Gustavsson [Gus05] que la k-ième valeur propre présente des
fluctuations gaussiennes autour de sa position attendue dans le semi-cercle, dans le bulk
lorsque k

n → a ∈ (0, 1) et au bord du spectre lorsque k → ∞ et k
n → 0. La démonstration

repose sur un résultat de Costin et Lebowitz [CL95] ainsi que de Soshnikov [Sos00b], qui
établissent des fluctuations gaussiennes pour le nombre de points d’un processus ponctuel
déterminantal situés dans un certain intervalle. Puisque les valeurs propres de l’ensemble
de Ginibre elliptique forment un processus ponctuel déterminantal et que les résultats de
[ADM23] donnent des asymptotiques pour le noyau associé, on pourrait chercher à obtenir
des fluctuations gaussiennes pour leurs parties réelles en utilisant ces techniques.



Chapitre 10

Produits de matrices unitaires

Ce chapitre présente un problème connu sous le nom de problème de Horn multiplicatif, ou
problème de Horn unitaire. Ce problème porte sur la caractérisation des valeurs propres
d’un produit de matrices unitaires lorsque les spectres de chacun des facteurs sont fixés. La
Section 10.1 introduit ce problème du point de vue de l’algèbre linéaire. La résolution du
problème de Horn unitaire fait intervenir des coefficients combinatoires appelés coefficients
de Littlewood-Richardson quantiques, comptant certaines courbes rationnelles, présentés
en Section 10.1.2. Dans les Section 10.2.1 et 10.2.2, nous présentons nos résultats sur
une version probabiliste du problème de Horn unitaire, correspondant respectivement aux
articles [FT24] et [Fra24], présentés dans les Chapitres 6 et 7 de cette thèse.

10.1 Valeurs propres d’un produit de matrices unitaires

10.1.1 Problème matriciel

Le problème de Horn unitaire, ou multiplicatif, pose la question suivante :

Étant données deux matrices unitaires, quelles valeurs propres peut avoir leur produit ?

Cette question a été résolue par Agnihotri et Woodward [AW98], qui ont fourni des iné-
galités caractérisant les valeurs propres possibles d’un produit de matrices unitaires. Par-
allèlement, Belkale [Bel01] a abordé la même question en résolvant un problème de Katz
[Kat96] concernant les systèmes locaux sur la sphère de Riemann. Biswas [Bis98] avait
auparavant résolu le problème de Horn multiplicatif en dimension n = 2.

Soit n ⩾ 1 un entier, et soient A,B ∈ U(n) deux matrices unitaires. À multiplication
près par det(A) et det(B), qui sont des nombres complexes de module 1, on peut supposer
que A et B sont de déterminant unité. Ainsi, dans cette section, nous considérons les
matrices du groupe spécial unitaire

SU(n) := {U ∈ Mn(C) | U∗U = In, det(U) = 1} .

Pour A ∈ SU(n), ses valeurs propres sont sur le cercle unité S1 et peuvent être paramétrées
par des angles

α = (α1 ⩾ · · · ⩾ αn) ,

où αk ∈ [0, 1] pour 1 ⩽ k ⩽ n et tels que
∑

1⩽k⩽n αk ∈ N. Notons

O(α) :=
{
U Diag(e2iπα1 , . . . , e2iπαn)U∗, U ∈ U(n)

}
213
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l’orbite de α, c’est-à-dire l’ensemble des matrices de SU(n) ayant pour valeurs propres
e2iπα1 , . . . , e2iπαn . Les résultats d’Agnihotri et Woodward [AW98], ainsi que de Belkale
[Bel01], donnent des inégalités nécessaires et suffisantes reliant les valeurs propres des ma-
trices (A,B,C) satisfaisant ABC = In. Introduisons l’espace de matrices correspondant à
un nombre quelconque de facteurs A1, . . . , Aℓ avec ℓ ⩾ 1 et d’orbites prescrites (θ1, . . . , θℓ)
où θk = (θk,1 ⩾ · · · ⩾ θk,n) :

{(A1, . . . , Aℓ) ∈ O(θ1) × · · · × O(θℓ) | A1 · · ·Aℓ = In} .

L’ensemble précédent est stable par conjugaison de chaque facteur. Notons le quotient

M(θ1, . . . , θℓ) := {(A1, . . . , Aℓ) ∈ O(θ1) × · · · × O(θℓ) | A1 · · ·Aℓ = In} /SU(n) . (10.1.1)

Le problème de Horn multiplicatif demande alors :

pour quels triplets (α, β, γ), l’ensemble M(α, β, γ) est-il non vide ?

10.1.2 Cohomologie quantique des Grassmanniennes

Nous décrivons dans cette section les résultats d’Agnihotri, Woodward [AW98] et de Bel-
kale [Bel01] qui donnent une caractérisation des triplets de valeurs propres de produits
de matrices unitaires. Cette caractérisation est exprimée à l’aide de coefficients combina-
toires appelés coefficients de Littlewood-Richardson quantiques ou invariants de Gromov–
Witten.

Coefficients de Littlewood-Richardson quantiques et inégalités

Pour 1 ⩽ k ⩽ n, nous notons

Gr(k, n) := {V ∈ Cn | dim(V ) = k}

la Grassmannienne des espaces de dimension k de Cn. Un drapeau F est une collection
d’espaces vectoriels

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn

telle que dim(Fk) = k pour tout 0 ⩽ k ⩽ n. De plus, pour 1 ⩽ k ⩽ n, nous notons

Pk
n := {I = (i1, . . . , ik) | 1 ⩽ i1 < i2 · · · < ik ⩽ n}

les k-uplets ordonnés d’éléments distincts de {1, . . . , n}.

Definition 10.1.1 (Variété de Schubert). Soit F un drapeau et soit I = (i1, . . . , ik) ∈ Pk
n

des indices distincts. L’ensemble

ΩI(F) := {L ∈ Gr(k, n) | ∀ 1 ⩽ j ⩽ k, dim(L ∩ Fij ) ⩾ j}

est appelé la variété de Schubert associée au drapeau F et à l’ensemble I.

Les invariants de Gromov–Witten, ou coefficients de Littlewood-Richardson quantiques,
sont définis comme le nombre de courbes rationnelles passant par certaines variétés de
Schubert. Nous renvoyons à [MS04] pour une construction détaillée de ces invariants.
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Definition 10.1.2 (Invariants de Gromov–Witten). Soit (I1, . . . , Iℓ) ∈ (Pr
n)ℓ une famille

de sous-ensembles d’indices de cardinal r ⩽ n, et soit d ⩾ 0 un entier. Soient p1, . . . , pℓ des
points de P1

C et F1, . . . ,Fℓ des drapeaux. L’invariant de Gromov–Witten ⟨σI1 , . . . , σIℓ⟩d
est le nombre d’applications holomorphes f : P1

C → Gr(r, n) de degré d telles que, pour
tout 1 ⩽ k ⩽ ℓ, on ait f(pk) ∈ ΩIk(Fk). Ce nombre est défini comme étant nul s’il existe
une infinité de telles applications.

Nous énonçons le théorème principal qui résout le problème de Horn multiplicatif, établi
par Agnihotri et Woodward [AW98] ainsi que Belkale [Bel01].

Theorem 10.1.3 (Caractérisation des valeurs propres de produits de matrices unitaires,
[AW98; Bel01]). Soit n ⩾ 1 et soit (θ1, . . . , θℓ) une famille telle que pour tout 1 ⩽ k ⩽ ℓ,
on ait :

θk,1 ⩾ · · · ⩾ θk,n,
n∑
i=1

θk,i = 0 et θk,1 − θk,n ⩽ 1.

Alors, il existe des matrices A1, . . . , Aℓ ∈ SU(n) telles que pour chaque 1 ⩽ k ⩽ ℓ, Ak ∈
O(θk) et A1 · · ·Aℓ = In si et seulement si les inégalités suivantes sont satisfaites :

ℓ∑
k=1

∑
i∈Ik

θk,i ⩽ d.

pour tout choix de I1, . . . , Iℓ de taille r < n tel que ⟨σI1 , . . . , σIℓ⟩d > 0.

Une liste réduite d’inégalités nécessaires et suffisantes est obtenue en remplaçant la con-
dition ⟨σI1 , . . . , σIℓ⟩d > 0 par ⟨σI1 , . . . , σIℓ⟩d = 1, voir [Bel01]. Le Théorème 10.1.3 donne
une caractérisation pour les produits ayant un nombre quelconque de facteurs.

10.2 Contributions

10.2.1 Densité de probabilité et volume

Dans cette section, nous présentons nos résultats sur une version probabiliste du problème
de Horn unitaire introduit à la Section 10.1. Dans le travail [FT24], nous obtenons une
expression de la densité de probabilité des valeurs propres d’un produit de matrices uni-
taires comme une somme de volumes de polytopes explicites.

L’ensemble des classes de conjugaison du groupe unitaire U(n) est homéomorphe au quo-
tient H = (Rn/Zn) /Sn, où le groupe symétrique Sn agit sur Rn/Zn par permutation des
coordonnées. Cet espace quotient est décrit par l’ensemble des suites décroissantes de
[0, 1[n. Pour θ = (θ1 ⩾ θ2 ⩾ · · · ⩾ θn) ∈ H, notons par O(θ) la classe de conjugaison
correspondante

O(θ) :=
{
Ue2iπθU∗, U ∈ U(n)

}
, où e2iπθ =


e2iπθ1 0 . . . 0

0 e2iπθ2
...

... . . . 0
0 . . . 0 e2iπθn

 .

La structure de groupe de U(n) induit un produit de convolution

∗ : M1(H) × M1(H) → M1(H)
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sur l’espace des mesures de probabilité sur H, tel que pour θ, θ′ ∈ H, δθ ∗ δθ′ soit la loi
de la variable aléatoire p(UθUθ′), où Uθ (resp. Uθ′) est une variable aléatoire suivant la loi
uniforme dans O(θ) (resp. O(θ′)) et où p : U(n) → H est l’application qui associe à un
élément de U(n) sa classe de conjugaison dans H.
Notons Hreg = {θ ∈ H | θ1 > θ2 > . . . > θn} l’ensemble des classes de conjugaison
régulières de U(n), c’est-à-dire celles de dimension maximale dans U(n). Pour α, β ∈ Hreg,
δα ∗ δβ admet une densité dP[· | α, β] par rapport à la mesure de Lebesgue sur{

γ ∈ H |
n∑
i=1

αi +
n∑
i=1

βi −
n∑
i=1

γi ∈ N
}
.

Le cone des ruches toriques Cg

Le résultat principal de [FT24] est une formule pour dP[· | α, β] exprimée en termes du
volume des polytopes similaires au modèle de la ruche (hive) de Knutson et Tao [KT99].
Pour 0 ⩽ d ⩽ n, on définit la ruche torique Rd,n comme l’ensemble

Rd,n :=
{

(v1, v2) ∈ J0, nK2, d ⩽ v1 + v2 ⩽ n+ d
}
,

qui peut être représenté comme un hexagone discret via l’application (v1, v2) 7→ v1+v2e
iπ/3,

voir la Figure 3.11 pour un cas particulier et sa représentation hexagonale.

• • •

• • • •

• • •

• •

Figure 10.1: L’ensemble R1,3 représenté via l’application (v1, v2) 7→ v1 + v2e
iπ/3.

Frontière d’une ruche torique

Pour tout ensemble S et toute fonction f : Rd,n → S, nous désignons par fA (resp. fB,
fC) le vecteur (f((d− i) ∨ 0, (n+ d− i) ∧ n))0⩽i⩽n (resp. (f(n+ d− i ∧ n, i))0⩽i⩽n, resp.
(f(n − i, i + d − n ∨ 0))0⩽i⩽n). Les vecteurs fA, fB et fC correspondent respectivement
aux frontières nord-ouest, est et sud-ouest de Rd,n via la représentation hexagonale, voir
la Figure 10.2.

Concavité losange torique

On appelle losange de Rd,n toute suite (v1, v2, v3, v4) ∈ (Rd,n)4 correspondant à l’une des
trois configurations de la Figure 10.3 dans la représentation hexagonale (dans laquelle
|vi − vi+1| = 1 pour tout 1 ⩽ i ⩽ 3).

Definition 10.2.1 (Étiquetage régulier). Une fonction g : Rd,n → Z3 est appelée étique-
tage régulier lorsque

• gAi = n+ i[3], gBi = i[3] et gCi = i[3],
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• ◦ ◦ ◦ • •

•

◦◦
◦

•

•

•

◦◦
◦

•

••◦◦◦••

•

◦◦◦

•

•

•

◦◦◦

•

•
fC
n−d−1 fC

1 fC
0 = fB

0

fB
1

fB
d−1

fB
d

fB
d+1

fB
n−1

fB
n = fA

0fA
1fA

d−1fA
d

fA
d+1

fA
n−1

fA
n = fC

n

fC
n−1

fC
n−d+1

fC
n−d

Figure 10.2: Les vecteurs des valeurs frontières fA, fB et fC .

•v2

•
v1

•
v3

• v4 •v1

•
v4

• v3

• v2

•
v4

•
v3

•
v2

• v1

Figure 10.3: Les trois losanges possibles (v1, v2, v3, v4) (la position des sommets ne peut
pas être permutée).

• pour tout losange ℓ = (v1, v2, v3, v4),(
g(v2) = g(v4)

)
⇒
{
g(v1), g(v3)

}
=
{
g(v2) + 1, g(v2) + 2

}
.

Un losange (v1, v2, v3, v4) pour lequel (g(v1), g(v2), g(v3), g(v4)) = (a, a+1, a+2, a+1) pour
un certain a ∈ {0, 1, 2} est appelé rigide. Le support d’un étiquetage régulier g : Rd,n → Z3
est le sous-ensemble Supp(g) ⊂ Rd,n des sommets de Rd,n qui ne sont pas le sommet v4
d’un losange rigide (v1, v2, v3, v4).

Un exemple d’étiquetage régulier est présenté à la Figure 10.4.

1 2 0

0 0 0 1

2 1 2

1 0

Figure 10.4: Un étiquetage régulier sur Rd,n. Les losanges rigides sont grisés.

Definition 10.2.2 (Cône de ruche torique). Une fonction f : Rd,n → R est dite torique
losanges concave par rapport à un étiquetage régulier g : Rd,n → Z3 lorsque f(v2)+f(v4) ⩾
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f(v1) + f(v3) pour tout losange ℓ = (v1, v2, v3, v4), avec égalité si ℓ est rigide dans g.

Pour tout étiquetage régulier g, le cône de ruche torique Cg par rapport à g est le cône

Cg =
{
f|Supp(g) | f : Rd,n → R torique losanges concave par rapport à g

}
.

Le cône de ruche de Knutson et Tao [KT99] est alors un cas particulier du cône de ruche
torique pour d = 0. Un exemple de fonction torique losange concave dans le cas n = 3, d =
1 est donné à la Figure 10.5.

52
23

43
23 1

54
23

50
23

38
23

18
23

52
23

44
23

28
23

46
23

33
23

Figure 10.5: Une fonction torique losange concave pour n = 3, d = 1 : les losanges grisés
sont les losanges rigides donnant les cas d’égalité dans la concavité en losanges.

Definition 10.2.3 (Polytope P gα,β,γ). Soient n ⩾ 3 et α, β, γ ∈ Hreg tels que
∑n
i=1 αi +∑n

i=1 βi =
∑n
i=1 γi + d avec d ∈ N. Soit g un étiquetage régulier sur Rd,n. Alors, P gα,β,γ

désigne le polytope de RSupp(g)\∂Rd,n constitué des fonctions dans Cg telles que

fA =
(

n∑
s=1

βs +
i∑

s=1
αs

)
0⩽i⩽n

, fB =
(

(d− i)+ +
i∑

s=1
βs

)
0⩽i⩽n

, fC =
(
d+

i∑
s=1

γs

)
0⩽i⩽n

.

Un exemple d’élément de P gα,β,γ pour n = 3 et d = 1 est donné en Figure 10.5, pour
α =

(
13
23 ⩾ 6

23 ⩾ 2
23

)
, β =

(
18
23 ⩾ 10

23 ⩾ 5
23

)
et γ =

(
20
23 ⩾ 9

23 ⩾ 2
23

)
.

Notre résultat principal est une formule pour la densité de la convolution de classes de
conjugaison régulières, sous la forme d’une somme de volumes de polytopes de Cg associés
à des étiquetages réguliers g.

Theorem 10.2.4 (Densité de probabilité pour le produit de classes de conjugaison).
Soient n ⩾ 3 et α, β, γ ∈ Hreg tels que

∑n
i=1 αi+

∑n
i=1 βi =

∑n
i=1 γi+d avec d ∈ N. Alors,

dP[γ|α, β] = (2π)(n−1)(n−2)/2∏n−1
k=1 k!∆′(e2iπγ)

n!∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 régulier
Volg(P gα,β,γ), (10.2.1)

où ∆′(e2iπθ) = 2n(n−1)/2∏
i<j sin (π(θi − θj)) pour θ ∈ H, et Volg désigne le volume par

rapport à la mesure de Lebesgue sur RSupp(g)\∂Rd,n.
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Lien avec les connexions plates

Soit M(Σ3
0, α, β, γ) l’espace de modules des connexions plates à valeurs dans SU(n) sur la

sphère à trois trous Σ3
0, dont les holonomies autour des lacets a, b, c appartiennent respec-

tivement à O(α),O(β) et O(γ). Nous renvoyons aux références [BM94; Ish99; Mor01] et
[NS65], pour les définitions sur les connexions et leurs espaces de modules. Cet espace est
relié au produit de matrices unitaires par l’isomorphisme

M(Σ3
0, α, β, γ) ≃ {(U1, U2, U3) ∈ O(α) × O(β) × O(γ), U1U2U3 = IdSU(n)}/SU(n).

On obtient comme corollaire du Théorème 10.2.4, une expression du volume de l’espace
de modules des connexions plates M(Σ3

0, α, β, γ) comme somme de volumes de polytopes
explicites.

Corollary 10.2.5 (Volume des connexions plates à valeurs dans SU(n) sur la sphère).
Soit n ⩾ 3 et considérons la forme volume canonique sur SU(n). Pour α, β, γ ∈ Hreg tels
que |α|1, |β|1, |γ|1 ∈ N, alors Vol

[
M(Σ3

0, α, β, γ)
]

̸= 0 uniquement si
n∑
i=1

αi +
n∑
i=1

βi +
n∑
i=1

γi = n+ d pour un certain d ∈ N,

et dans ce cas :

Vol
[
M(Σ3

0, α, β, γ)
]

= 2(n+1)[2](2π)(n−1)(n−2)

n!∆′(e2iπγ)∆′(e2iπα)∆′(e2iπβ)
∑

g:Rd,n→Z3 régulier
Volg(P gα,β,γ̃),

où γ̃ = (1−γn, . . . , 1−γ1) et où les polytopes P g
α,β,γ̃

sont définis dans la Définition 10.2.3.

10.2.2 Énumération des croisements dans les puzzles à deux étapes

Dans cette section, nous présentons nos résultats correspondant à l’article [Fra24], qui fait
l’objet du Chapitre 7. Le résultat principal est le Théorème 10.2.10, qui dénombre des
configurations dans une généralisation des étiquetages réguliers de la Définition 10.2.1.

Definition 10.2.6 (Réseau triangulaire). Soit n ⩾ 1 et soit ξ = e
iπ
3 . On note Tn =

{r + sξ, 0 ⩽ r + s ⩽ n} l’ensemble des sommets du réseau triangulaire de taille n, et
En = {(x, x+ v) | x, x+ v ∈ Tn et v ∈ {−ξ2l, 0 ⩽ l ⩽ 2}} l’ensemble des arêtes de Tn. Les
faces du réseau Tn sont des triangles que l’on dit directs (respectivement inversés) si les
sommets correspondants (x1, x2, x3) ∈ T 3

n peuvent être étiquetés de sorte que x2 − x1 =
(1, 0) et x3 − x1 = ξ (respectivement x3 − x1 = ξ).

Les arêtes de En ne peuvent avoir que trois orientations possibles. Si x = r + sξ ∈ Tn, on
définit trois coordonnées (x0, x1, x2) par

x0 := n− (r + s), x1 := r et x2 := s.

Definition 10.2.7 (Coordonnées et type d’une arête). On dit qu’une arête e = (x, x+ v)
est de type l pour l ∈ {0, 1, 2} lorsque v = −ξ2l. L’origine de e est x et les coordonnées
de e sont le triplet (e0, e1, e2) = (x0, x1, x2). La hauteur de e de type l est définie par
h(e) = el. On définit aussi les arêtes frontières de En par

∂
(n)
0 := (((n− r + 1, 0), (n− r, 0)), 1 ⩽ r ⩽ n)

∂
(n)
1 :=

(
(nξ + (r − 1)ξ, (nξ + rξ)), 1 ⩽ r ⩽ n

)
∂

(n)
2 :=

(
((r − 1)ξ, rξ), 1 ⩽ r ⩽ n

)
.
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Definition 10.2.8 (Application de couleur). Soit n ⩾ 1. Une application de couleur est
une application C : En → {0, 1, 3,m} telle que les couleurs des arêtes autour de chaque
face triangulaire, dans le sens horaire, soient (0, 0, 0), (1, 1, 1), (1, 0, 3) ou (0, 1,m), à une
permutation cyclique près.

Les valeurs d’une application de couleur C sur les arêtes frontières sont notées ∂C =
(∂0C, ∂1C, ∂2C) et sont définies pour l ∈ {0, 1, 2} par ∂lC = C|∂(n)

l

. On dit que C satisfait
la condition au bord ∂ = (∂0, ∂1, ∂2) si ∂C = ∂.
Alternativement, on peut voir une application de couleur C comme un pavage de Tn par
l’ensemble de tuiles étiquetées par leurs arêtes, donné dans la Figure 10.6, où les tuiles
peuvent être tournées. Les deux dernières tuiles sont appelées respectivement lozanges 3
et m, en accord avec la couleur de leur arête centrale.

1 1
1

0 0
0

0 0
1

1
3 1 1

0

0
m

Figure 10.6: Tuiles possibles pour les applications de couleur

Nous considérerons des conditions au bord ∂C ∈ {0, 1}3n ayant un nombre égal d’arêtes
de couleurs 0 et 1, respectivement notés n0 et n1, de sorte que n0 +n1 = n, voir la Figure
10.7 ci-dessous. De telles conditions au bord correspondent à celles des puzzles à deux
étapes dans [Buc+16], où l’on a retiré les étiquettes 2 sur le bord. Ces puzzles fournissent
une expression combinatoire pour les invariants de Gromov–Witten, voir [BKT03].

0 0
0

0 0
0

0 0
0

0 0

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1 1
1

1

1
0

00

0
1

1 1

1

3

3

3m

m

m

∂ 2
C
=
(0
, 1
, 0
, 1
, 1
) ∂

1 C
=
(1, 1, 0, 0, 1)

∂0C = (1, 0, 1, 1, 0)

Figure 10.7: Une application de couleur sur E5 avec condition au bord ∂C =
((1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (0, 1, 0, 1, 1)).

Definition 10.2.9 (Nombres de gash). Soit C : En → {0, 1, 3,m} une application de
couleur. Pour tout l ∈ {0, 1, 2} et toute arête e ∈ ∂

(n)
l , on note n(C, e) = |{e′ ∈ ∂

(n)
l :

h(e′) < h(e) et C(e′) = 1}| le nombre d’arêtes colorées en 1 situées à l’est (respectivement
au nord, au sud) de e si e ∈ ∂

(n)
0 (respectivement e ∈ ∂

(n)
1 , e ∈ ∂

(n)
2 ). Les nombres de gash

de l’application de couleur C sont définis pour l ∈ {0, 1, 2} par

G(C, l) :=
∑

e∈∂(n)
l

:C(e)=0

n(C, e). (10.2.2)

Par exemple, pour l’application de couleur C de la Figure 10.7, on a G(C, 0) = 4, G(C, 1) =
4, G(C, 2) = 1. Le résultat principal de notre travail [Fra24] est le Théorème 10.2.10
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qui donne une formule pour le nombre d’arêtes 3 et m dans les applications de couleur,
dépendant uniquement des nombres de gash. Le nombre d’arêtes m dans les applications
de couleur est le nombre de losanges rigides dans l’étiquetage régulier correspondant, lequel
encode les conditions d’égalité dans les polytopes apparaissant dans le Théorème 10.2.4.
Nous renvoyons au Chapitre 7 pour plus de détails sur cette correspondance.

Theorem 10.2.10 (Nombre d’étiquettes dans les applications de couleur). Soit C une
application de couleur sur En ayant n0, respectivement n1, arêtes de couleur 0, respective-
ment 1, sur chacun de ses bords. Soient m(C) et s(C) respectivement le nombre d’arêtes
m et 3 dans C. Alors,

m(C) = G(C, 0) +G(C, 1) +G(C, 2) − n0n1 (10.2.3)

et
s(C) = 2n0n1 −G(C, 0) −G(C, 1) −G(C, 2) . (10.2.4)

10.3 Questions ouvertes

10.3.1 Volumes des connexions plates sur des surfaces générales

Le Corollaire 10.2.5 fournit une formule pour le volume des connexions plates SU(n) sur
la sphère à trois trous. De tels volumes sont liés à la mesure de Yang-Mills sur les surfaces
de Riemann dans la limite des petites surfaces [For93], et il a été démontré dans [Wit92;
MW99] que leur calcul pour des surfaces de Riemann compactes quelconques peut être
réduit au cas de la sphère à trois trous par recollement. Une procédure inductive similaire
est utilisée dans [Mir07] pour réduire le problème de volume de l’espace des modules de
courbes au cas de genre zéro. Comprendre comment l’expression du Corollaire 10.2.5
se comporte lorsque l’on recolle des sphères à trois trous pour former des surfaces plus
générales pourrait mener à des formules de volumes de connexions plates sur des surfaces
de Riemann compactes.

10.3.2 Un modèle de ruche à deux étapes

Le travail de Knutson et Tao [KT99; KT03] a conduit à une description des coefficients
de Littlewood-Richardson comme le nombre de points entiers dans un polytope, le poly-
tope ruche. En plus de la formulation en puzzles pour les constantes de structure de la
cohomologie de la variété de drapeaux à deux étapes de [Buc+16], on pourrait chercher
une description de ces constantes de structure comme le nombre de points entiers dans un
polytope qui généraliserait le polytope ruche de Knutson et Tao.

10.3.3 Extension à d’autres groupes de Lie

Pour la version hermitienne du problème de Horn, qui consiste à caractériser les valeurs
propre d’une somme de matrices hermitiennes, des extensions aux matrices symétriques
réelles et hermitiennes quaternioniques ont été faites, voir par exemple [Ful00] et [CMZ19].
D’autres extensions ont également été traitées dans [Par23] pour les groupes de Lie ré-
ductifs non compacts et dans [CM23] pour les groupes de Lie compacts. On peut poser
la question d’extensions similaires pour la version multiplicative dans d’autres groupes de
Lie G distincts du groupe unitaire U(n). En particulier, on pourrait chercher à exprimer
la densité pour un produit de matrices de permutation, ou de matrices orthogonales. Le
cas des matrices de GL(n) a été étudié dans [KO24].
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MOTS CLÉS

Spectre de matrices aléatoires, fonctions analytiques aléatoires, cohomologie quantique, pavages du réseau
triangulaire.

RÉSUMÉ

Cette thèse explore certains aspects de la solvabilité exacte en théorie des matrices aléatoires. Elle est structurée en
deux parties principales.

La première partie traite d’un problème en grande dimension, sur comportement asymptotique des polynômes
caractéristiques de matrices aléatoires. Nous nous concentrons sur deux modèles intégrables. Le premier est
l’Ensemble de Ginibre Elliptique, une interpolation gaussienne entre l’Ensemble de Ginibre et son homologue hermitien,
l’Ensemble Unitaire Gaussien. Le second modèle concerne les matrices de permutation, où la permutation sous-jacente
suit la distribution d’Ewens généralisée pour laquelle la mesure d’une permutation dépend uniquement de sa structure
en cycles. Pour ces deux modèles, nous établissons la convergence en loi du polynôme caractéristique vers une fonction
analytique aléatoire lorsque la dimension des matrices tend vers l’infini. Cette convergence a lieu en dehors du support
des valeurs propres et est complémentaire de la convergence des distributions spectrales.

La seconde partie concerne un problème en dimension fixée. Nous considérons des produits de matrices uni-
taires uniformément distribuées sur des orbites de conjugaison. Nous déterminons la densité de probabilité des valeurs
propres de ce produit. Cette densité est liée au volume de l’espace des modules des connexions plates sur une sphère
à trois trous. Notre formule fournit une expression positive pour la densité et pour ce volume sous la forme d’une somme
de volumes de polytopes explicites. Ces polytopes émergent d’objets combinatoires appelés puzzles, permettant de
calculer les coefficients d’intersection pour la cohomologie des variétés de drapeaux à deux sous-espaces. Nous
explorons également certaines propriétés de ces puzzles.

ABSTRACT

This thesis explores certain aspects of exact solvability in random matrix theory. It is structured into two main parts.

The first part examines a high dimensional problem on the asymptotic behavior of characteristic polynomials of
random matrices. We focus on two integrable models. The first is the elliptic Ginibre Ensemble, a Gaussian interpolation
between the Ginibre Ensemble and their Hermitian counterpart, the Gaussian Unitary Ensemble. The second model
involves permutation matrices, where the underlying permutation follows the generalized Ewens distribution, for which
the measure of a permutation only depends on its cycle structure. For both models, we establish the convergence in
law of the characteristic polynomial, as the matrix dimension tends to infinity, towards a random analytic function. This
convergence occurs outside the eigenvalue support and is complementary to the convergence of spectral distributions.

The second part is a fixed dimensional problem. We consider a product of unitary matrices that are uniformly
distributed on fixed conjugacy orbits. We derive the probability density for the eigenvalues of this product. This probabilty
density is related to the volume of moduli space of flat connections on the three-holed sphere. Our formula provides an
positive expression for both the density and this volume as a sum of volumes of explicit polytopes. These polytopes arise
from combinatorial objects called puzzles, which compute intersection coefficients for the cohomology of two-step flag
varieties. We further investigate some properties of these puzzles.

KEYWORDS

Spectrum of random matrices, random analytic functions, quantum cohomology, tilings of the triangular lattice.


	I Introduction
	Random Matrix Theory
	Random Matrices
	Determinantal Point Processes
	Convergence of empirical eigenvalue distributions
	Convergence of extreme eigenvalues

	Characteristic polynomials
	Random characteristic polynomials and traces
	Unitary matrices
	Study of outliers
	Contributions to the subject
	Open questions

	Horn problems
	Sum of Hermitian matrices
	Products of unitary matrices
	Contributions to the subject
	Open questions


	II Articles on characteristic polynomials
	Characteristic polynomial of Gaussian elliptic matrices
	Introduction and main result
	Proof of Theorem 4.1.1
	Proof of Theorem 4.1.3

	Characteristic polynomial of Ewens random permutations
	The generalized Ewens measure
	Convergence of the characteristic polynomial
	Proof of the convergence
	Tightness
	Convergence of traces
	Poisson Expression for the limit


	III Articles on products of unitary matrices
	Positive formula for the product of conjugacy classes
	A positive formula for the density
	Density and quantum cohomology
	Quantum cohomology puzzles
	Discrete two-colored dual hive model
	Color swap
	Convergence to a volume of hives

	Enumeration of crossings in two-step puzzles
	A formula for the number of crossings
	Arrows
	A simpler case
	The general case


	Résumé en français
	La théorie des matrices aléatoires
	Matrices aléatoires
	Convergence des mesures spectrales

	Polynômes caractéristiques
	Polynômes caractéristiques aléatoires et traces
	Contributions
	Questions ouvertes

	Produits de matrices unitaires
	Valeurs propres d'un produit de matrices unitaires
	Contributions
	Questions ouvertes



